
Delivery date: 31.12.2014

Authors:

Henrik Rusche
Wikki
E-mail : h.rusche@wikki.co.uk

Heinz Preisig
NTNU
E-mail :
heinz.preisig@chemeng.ntnu.no

Deliverable 5.2
 Orchestrator v0:

First release of
orchestrator, database
structure and interface
library for the MoDeNa

software

WP’s leader: Wikki

Principal investigators:
Henrik Rusche, Wikki (UK)

Project’s coordinator:
Heinz Preisig, NTNU (N)

1. Description of deliverable

An initial implementation of the software framework has been carried out. The
software is based entirely on open-source software. A set of initial adaptors and recipes
and formed a suitable basis for the software development tasks planned within MoDeNa
(task 5.1).

2. Summary of contribution of involved partners

Wikki carried out the software implementation of the software framework. Initial adaptors
and recopies have been submitted by VSCHT, POLITO, TUE, US, UNITS. VSCHT provided

the Fortran module definition.

3. Introduction

MoDeNa aims at developing, demonstrating and assessing an easy-to-use multi-
scale software-modelling framework application under an open-source licensing scheme
that delivers models with feasible computational loads for process and product design of
complex materials. The use of the software will lead to novel research and development
avenues that fundamentally improve the properties of these nanomaterials.

The concept of MoDeNa is an interconnected multi-scale modelling-software
framework. Four scales are linked together by this framework namely the nano-, micro-,
meso-, and macroscale. This unifying software framework will allow for enhanced product-
and process design across these scales. As is shown in Figure 1, the modelling framework
is intimately coupled with the software framework. In this project, the software framework
will facilitate and greatly enhance the modelling activities. The orchestrator enables the
linking of all scales which is a necessary condition to obtain an integral approach, in
contrast to a series of disconnected phases.

The orchestrator is the backbone of our software suite in that it logically links the
specific task-solvers (or applications). These application-specialised codes mostly existing
already and will be connected across the scales. The orchestration software is very much
like a work-flow generation interface, in which the different task-solvers acting at each
single scale are ‘orchestrated’ by the framework. The orchestrator calls the external
software and obtains the necessary information, which is analysed, pre-processed and
passed to the next task-solver through a suitable protocol.

This coupling will allow for the application to product and process design as well as
the integration of the various computational tasks (see Figure 2) through linking of
models, associated parameters, data, and the production process of a multi-scale
material can be accurately simulated.

Figure 1: Conceptual structure of MoDeNa.

Within the project an open-source software-suite is constructed that logically
interlinks scale and problem specific software of our university groups, using a software
orchestrator that communicates information utilizing our proposed new communication
standard in both directions, namely upwards to the higher scale and downwards to the
lower scale. This feature is unique, enabling the solution of complex material design
problems.

Multi-scale coupling as proposed in MoDeNa requires the exchange of information
between software instances developed for specific scales in a consistent way. In order to
achieve this, generating consistent representations for models and data that is based on
a solid theoretical framework is necessary. The information exchange is governed by
protocols and may occur in two ways, namely:
 ‘forward mapping’ (passing information from the fine to the coarse scale, upward

direction)
 backward mapping’ (passing information from the coarse to the fine scale, downward

direction)
‘Forward mapping’ is relatively straightforward, while ‘backward mapping’

inevitably requires iteration since changing the operating conditions at the fine level
changes the feedback to the coarse level. ‘Backward mapping’ can be realised in two
ways: ‘Two-way coupling’ and ‘model fitting’ through a sequence of model based design
of experiments and parameter estimation. The first approach usually requires exchange
of large amounts of data during runtime that may be expensive either due to the
complexity of the data exchange or the computational cost associated with executing the
fine scale software. In such cases, surrogate models, which are ‘parameter fitted models’
presents the only viable alternative.

The software framework under development combines complex features and IT
infrastructure such as job scheduling, distributed computing, code coupling, model
database, (model based) design of experiments and parameter estimation in a unique

Figure 2: Conceptual structure of MoDeNa, coupling solvers and models into tools, which form sequences through recipes and the
orchestrator. The sequence from nano-scale to macro-scale signifies the range of scales.

and unified way. It is unrealistic to develop all of these features from scratch within in the
time and budget constraints. Hence the development must start from already existing
software.

In the next sections we present the software evaluation for each component.

4. Interaction of the Software Components

The interaction of the software components is shown in Figure 3 for a backward
mapping. The execution of the macroscopic and microscopic codes is depicted by the
white arrows on the right and left hand side while parameter fitting and design of
experiments take place within the arrows on the top and bottom. The first two operations
are handled by user of the software framework through suitable recipes and scale-specific
codes while the latter operations are handled by the MoDeNa software framework. The
green and red arrows stand for communication interfaces with the central database.

In the MoDeNa framework, all scale interactions are handled through surrogate
models which are invoked within in the macroscopic code. Respective code blocks for

model instantiation and model usage are put within the right arrow. During model
instantiation, all necessary data such as model parameters is obtained from the
database. After instantiation, the model can be called and its results are used within the
macroscopic code. During invocation of the surrogate model, the inputs given to the
model are checked against the range of validity recorded in the database. If the model is
used out of bounds, the violating point (outside point) is then recorded in the database
and an exception is raised which must then be handled appropriately by the embedding
codes and recipes. In the simplest case, violation of the model bounds will result in a
controlled termination of macroscopic code and invocation of the design of experiments
module. This module then determines a set of new experiments to be executed on the
microscopic level. After the microscopic recipe is run for each experiment, a new set of
model parameters is obtained by the parameter fitting module and the macroscopic code
is restarted. Here, different strategies are possible which will be subject to future
research.

Figure 3:Interaction of software components in the MoDeNa framework.

It should be noted that a microscopic code may act as a macroscopic code by
embedding a surrogate for a yet another, even lower scale. This scenario will be
supported in future version of the software framework.

It is evident that the order of execution of the recipes changes dynamically and
that the generation of multiple points by the design of experiments module offers
potential for parallelism. This complexity is handled by the orchestrator.

5. Software Stack

The software stack is shown in Figure 4. The colours symbolise computer
languages used in the implementation. Since orchestration of the recipes is handled
through FireWorks (blue box) all recipes are implemented as FireTasks (red boxes).
FireTasks are derived python classes which either invoke an executable/external (shell)
script or directly call functionality coded in python. The first method will typically be used

in computational recipes provided by the users of the framework while it is envisaged the
parameter fitting and design of experiment modules are coded in python. Embedded
surrogate models appear in two places: within the computational codes and parameter
fitting while the MoDeNa interface library ensures that the correct models are used in
both. This core component is written in pure C. Language interoperability is ensured by
SWIG python wrappers and a Fortran 90 module definition. Consequently, the surrogate
models implemented in MoDeNa can be called from C, C++, Fortran 90 and python.

6. Two Tank Tutorial

This tutorial has been created to show the features of the MoDeNa software
framework for a trivial example. The problem modelled is that of the discharge of air from
one tank into another (macroscopic problem) through a nozzle (microscopic problem).
Depending on the flow conditions and shape of the nozzle, the nozzle flow may be
difficult to compute and require a full 3D CFD calculation. In the tutorial, this calculation is
replaced by an engineering correlation. Assuming that the range of inputs is unknown a-
priori, this is a prototypical backward mapping problem. twoTanksMacroscopicProblem.C
uses the MoDeNa interface library to embed an even simpler model for the flow rate.

Figure 4:MoDeNa software stack

While twoTanksFullProblem.C implements it fully integrated. The latter executable is used
solely as a reference. This prototype application of software framework has been initially
distributed to project partners. The tutorial is intentionally kept to the bare minimum in
order to reduce runtime and dependencies (e.g. no external codes).

A part of the source code of twoTanksMacroscopicProblem.C is printed in Figure 5.
The code snippet creates a connection to the MongoDB database and then instantiates a
surrogate model. After determining the positions of the input arguments, the input vector
is filled and the model is called. Depending on the return value, the program is
terminated after appropriate clean-up. At this point, additional actions may be required in
order to allow restarts from the current state.

 // Open connection to database
 mongoc_client_t *client = mongoc_client_new ("mongodb://localhost:27017/");

 // Instantiate a model
 modena_model_t *model = modena_model_new (client, "dummy", "flowRate", "dummy");

 // Allocate memory and fetch arg positions
 modena_inputs_t *inputs = modena_inputs_new (model);
 modena_outputs_t *outputs = modena_outputs_new (model);

 size_t Dpos = modena_model_inputs_argPos(model, "D");
 size_t rho0Pos = modena_model_inputs_argPos(model, "rho0");
 size_t p0Pos = modena_model_inputs_argPos(model, "p0");
 size_t p1Pos = modena_model_inputs_argPos(model, "p1");

 while(t + deltat < tend + 1e­10)
 {
 t += deltat;

 if(p0 > p1)
 {
 // Set input vector
 modena_inputs_set(inputs, Dpos, D);
 modena_inputs_set(inputs, rho0Pos, rho0);
 modena_inputs_set(inputs, p0Pos, p0);
 modena_inputs_set(inputs, p1Pos, p1);

 // Call the model
 int ret = modena_model_call (model, inputs, outputs);

 // Terminate, if requested
 if(ret != 0)
 {
 modena_inputs_destroy (inputs);
 modena_outputs_destroy (outputs);
 modena_model_destroy (model);
 mongoc_client_destroy (client);

 return ret;
 }

 // Fetch result
 double mdot = modena_outputs_get(outputs, 0);

 // Update states of the tanks

 m0 ­= mdot*deltat;

 m1 += mdot*deltat;

 }

 else

 {

 // Symmetric code, omitted for brevity

 }

 }

Figure 5: twoTanksMacroscopicProblem.C

7. Current Features

 Optional use of the interface: This feature allows models to be used from C, C++,
Fortran90 or python code.

 Automatic compilation of models: This feature allows storage of C-code in the
database and automatically compiles the code and links it into the respective
FireTask.

 DOE fitting and parameter fitting: These features are subject to deliverable 5.3
and form a core structure in the MoDeNa orchestrator. Their implementation allows
for the "daisy-chaining" of the scales as described in D5.3. Combined with a state
definition of the tasks and an event handling these modules will form the core of
the workflow handling.

 Platform independent make-system (CMake).
 Library compiles on Linux and Mac OS X.
 10 mappings for PU foam and TPUs have been implemented and submitted:

o acoustics (VSCHT),
o bubbleGrowth (VSCHT),
o thermalConductivity (VSCHT),
o CFD_tool (POLITO),
o coalescenceKernel_Tool (TUE),
o rheology_Tool (TUE),
o DFT_Tool (US),
o EOS_Tool_PolymerDensity (US),
o EOS_Tool_Solubilities (US),
o density (UNITS)

8. Development Status

The consortium members are in the process of implementing the recipes and
adaptors for their respective parts of the demonstration problems. The scope of the
problems is purposely kept limited so as to learn about the problems that arise from the
user's side. The current approach is that an application starts with the existing primary
example and extends it to the desired scope. This then forms a package which is aimed to
evolve into one component in the overall workflow.

10 mappings have so far been submitted and we also are working on an extended
tutorial example that will demonstrate more of the features mainly with respect to the
splitting of the DOE and model fitting facilities. As mentioned in D5.2, the target is to
increase the flexibility of the DOE and fitting component by using the statistical
programming language R as the basis. This will enable us to generate recipes in R, which
is an extremely rich environment for statistical data analysis.

9. Future Work

Future work will focus on testing and applying the current framework to the PU
foams and TPUs. In the process, we will improve the usability of the library based on the
comments and suggestions which we receive from the user base. This will include a class
hierarchy for models and recipes such that only a minimum of coding is required by the
user for typical application while the framework is kept open for future extensions and
specialisations. Further improvements will be done to the database storage layout to
store fitting data and models separately as well as to store the model dependency in
scenarios where surrogate models are used within the microscopic code.

Options for surrogate model import, for example, Automatic generation of C-code
from unified model description and semi-automatic wrapper generation for
polymerisation kinetics as produced by Predici.

The generalisation and flexibility of the DOE/parameter fitting are under
development. Two larger problems have been defined as next targets for the
implementation of PU-relevant workflows. In crude terms the first represents the
interaction and agglomeration of the lower scales, whilst the second is aiming at the

larger scales and the integration of surrogate models for the lower scales. This
development is planned as a collaboration of WIKKI and NTNU.

Global state of the computational units and the centralised event handling are at a
high priority as they will be essential for the "daisy-chaining" of the scale-related
computational tasks.

	1. Description of deliverable
	2. Summary of contribution of involved partners
	3. Introduction
	4. Interaction of the Software Components
	5. Software Stack
	6. Two Tank Tutorial
	7. Current Features
	8. Development Status
	9. Future Work

