
Delivery date:

31-08-2015

Authors:

Sigve Karolius

MoDeNa

Deliverable D4.3

Ba
kward Mapping Tool

Prin
ipal investigators:

Sigve Karolius

Heinz A Preisig

Henrik Rus
he

Dominik Christ

Hrvoje Jasak

Collaborators:

Cansu Birgen

Proje
t
oordinator:

Heinz A Preisig

heinz.preisig�
hemeng.ntnu.no

Abstra
t:

MoDeNa implements the
on
ept of surrogate models that represent

approximation of
omplex models. The surrogate model is �tted to

the behaviour of the
omplex models using standard te
hniques. On
e

identi�ed, the surrogate
an be used to repla
e the
omplex model

with the obje
tive to redu
e the
omputational load. Fitting is done

on demand, i.e. the model requesting the surrogate is
ontrolling

the domain in whi
h the surrogate is �tted and th strategy on how

the domain is being extended and what error
riterion is used. The

implementation works re
ursively over the s
ales.

ii

© 2015

MoDeNa

iii

Contents

1 Introdu
tion 1

2 Ba
kward Mapping Models in the MoDeNa Framework 1

2.1 User-level Ba
kward Mapping Model . 2

2.2 The Ba
kward Mapping FireTask . 3

2.2.1 Framework-level ba
kward mapping surrogate model de�nition 4

2.3 Ba
kward Mapping Work�ow . 9

3 Strategies 11

3.1 Fundamental Framework Implementation . 12

3.2 Spe
i�
 Strategy Implementation Example . 14

4 Ba
kward mapping in pra
ti
e 14

iv

1 Introdu
tion

The term ba
kward mapping refers to
omparing the output from a surrogate model to that of the

orresponding exa
t model. However, in order to
larify the syntax of the
omputer
ode in the MoDeNa

framework, the
ode employs a terminology for the surrogate model that is somewhat di�erent: From

a programming perspe
tive the implementation of a surrogate model must in
lude a
allable fun
tion;

therefore, the framework distinguishes between the surrogate fun
tion, i.e. the
allable fun
tion, and

the surrogate model.

The reason for the design
hoi
e was to fa
ilitate the implementation of surrogate models with di�erent

properties, e.g. ba
kward mapping
apabilities. Consequently, ba
kward mapping is not a standalone

module in the MoDeNa framework, but rather implemented as a property of the surrogate model itself.

There are two kinds of surrogate models in the MoDeNa framework: ba
kward mapping and forward

mapping models. Only the ba
kward mapping model
an
ompare the output from the surrogate

fun
tion to that of the exa
t model, thus validating the parameters of the surrogate fun
tion.

Sin
e the ba
kward mapping task itself is simply to
ompare the input-output from the surrogate

fun
tion to that of the exa
t simulation, i.e. after it the surrogate fun
tion parameters have been

�tted, the pro
edure itself is dependent on the design of experiments and parameter �tting. The

standalone features of the framework is therefore the design of experiments and parameter �tting

modules, whi
h are independent from one another; therefore, in order to make the framework more

modular, the
on
ept of strategies was introdu
ed. This allows the user to
hoose the strategies for

design of experiments and parameter �tting. Moreover, the R statisti
al language is used as a ba
kend

for statisti
al methods of design of experiments and nonlinear regression, thus making it qui
ker to

implement spa
e �lling designs, regression and statisti
al methods.

The report will explain how the ba
kward mapping pro
edure is integrated into the MoDeNa frame-

work, and elaborate on the strategies that allow for the �exible instantiation. Further it des
ribes the

integration of the
omputational re
ipes written in the R statisti
al language.

2 Ba
kward Mapping Models in the MoDeNa Framework

From the users perspe
tive the ba
kward mapping
apabilities of the MoDeNa framework are fa
ilitated

by adding strategies spe
i�
 to: initialisation, design of experiments, and parameter �tting as shown

in Listing 1. This design
hoi
e has been made primarily for two reasons:

• Easy to use and understand

• Qui
k implementation and integration of new modules

This se
tion will introdu
e the big pi
ture of the te
hni
al aspe
ts behind the implementation of the

�Ba
kward Mapping Model�, i.e. the ba
kward mapping tool, in order to avoid getting
aught up in

oding-spe
i�
 details related to the implementation. The report will therefore spe
i�
ally fo
us on

explaining how the MoDeNa framework implementation integrates into:

1. Fireworks

• FireTask

• Work�ow

2. MongoDB

1

• Looking up surrogate models

• Updating the database

3. The low-level C-Framework

2.1 User-level Ba
kward Mapping Model

The �ba
kward mapping model�
lass in the MoDeNa framework is responsible for handling surrogate

models that require ba
kward mapping. For the purpose of
ompleteness, note that the framework

also de�nes a �forward mapping model�; whi
h, as the name di
tates, does not fa
ilitate any ba
kward

mapping
apabilities.

The
ode blo
k in Listing 1 shows an example of how the user will de�ne a ba
kward mapping model.

In addition to spe
ify strategies for: initialisation, design of experiments and parameter �tting, the user

has to suply a name, surrogate fun
tion and exa
t task. The latter is the simulation whose input-output

data the surrogate models parameter will be �tted to.

1 m = Ba
kwardMappingModel (

2 _id = ' flowRate ',

3 surrogateFun
tion = f ,

4 exa
tTask = FlowRateExa
tSim () ,

5 substituteModels = [℄,

6 initialisationStrategy = Strategy .InitialPoints (

7 initialPoints =

8 {

9 'D ': [0.01 , 0.01 , 0.01 , 0.01℄ ,

10 ' rho0 ': [3.4 , 3.5 , 3.4 , 3.5℄ ,

11 'p0 ': [2.8 e5 , 3.2 e5 , 2.8 e5 , 3.2 e5 ℄,

12 ' p1Byp0 ': [0.03 , 0.03 , 0.04 , 0.04℄ ,

13 },

14),

15 outOfBoundsStrategy = Strategy .ExtendSpa
eSto
hasti
Sampling (

16 nNewPoints = 4

17),

18 parameterFittingStrategy = Strategy .NonLinFitWithErrorContol (

19 testDataPer
entage = 0.2 ,

20 maxError = 0.05 ,

21 improveErrorStrategy = Strategy .Sto
hasti
Sampling (

22 nNewPoints = 2

23),

24 maxIterations = 5 # Currently not used

25),

26)

Listing 1: The
ode blo
k shows an example of an instantiation of a ba
kward mapping surrogate

��owRate�. The surrogate model is instantiated using notation equivalent to a JSON do
ument

where every key has an asso
iated value. The model de�nes a �surrogate fun
tion� in line 3, whose

parameters will be �tted to the input-output data of the �exa
tTask� in line 4. The strategies in

lines: 6, 15, 18 and 21 are triggered by events during the simulation.

Note that from the user perspe
tive, just by looking at the de�nition in Listing 1, it is not at all

obvious how the underlying framework works. From this se
tion it should be noted that the behaviour

of the ba
kward mapping model, i.e. the strategies for initialisation et
., is spe
i�ed by the user using

strategies. Consequently, it
an be
on
luded that there are �slots� in the underlying framework, i.e.

�missing� blo
ks of
ode that are designed to be
ompleted by the user,
alled strategies.

2

2.2 The Ba
kward Mapping FireTask

In order to perform the a
tual ba
kward mapping, i.e.
ompare output from the surrogate fun
tion,

e.g. line 3 from Listing 1, to that of the exa
t model, su
h as the one de�ned in line 4, it is ne
essary

to start a FireTask that
an override the main work�ow of the simulation. The reason for this is that

if the ba
kward mapping is being performed by a surrogate model it is be
ause the parameters of the

model are no longer valid and are in the pro
ess of being updated. It is therefore logi
al that the

simulation using the surrogate model
annot
ontinue.

The MoDeNa framework therefore introdu
es two
lasses: Ba
kward Mapping Task and Ba
kward

Mapping S
ript Task. The latter is the FireTask that Fireworks exe
utes in order to handle the

overall simulation, and the �rst is a wrapper whi
h analyses the output from the simulation when an

error o

urs, and modi�es the work�ow a

ordingly.

The Ba
kward Mapping Task in Listing 2 only
ontains one method, handleReturnCode, whi
h
at
hes

the output from the main simulation and takes a
tion a

ordingly. There are
urrently two ways the

main simulation
an exit and be
aught by the framework using error
odes 201 and 200 for referring

to instantiation or a surrogate model being out of bounds in lines 7 and 23 respe
tively. Any other

error
ode will, a

ording to line 40, terminate the the simulation with an error, �nally the simulation

ontinues until it has su

eeded in line 44.

1
lass Ba
kwardMappingTask :

2

3 def handleReturnCode (self , returnCode):

4

5 # Analyse return
ode

6 print (' return
ode = %i ' % returnCode)

7 if returnCode == 201:

8 print term .
yan + '' Performing Initialisation '' + term . normal

9 model = modena . SurrogateModel .load FromModule ()

10

11 # Continue with exa
t tasks , parameter estimation ,

12 # and (finally) this

13 # task in order to resume normal operation

14

15 print model . initialisationStrategy ()

16 wf = model . initialisationStrategy (). workflow (model)

17 wf .add AfterAll (

18 Workflow2 ([Firework (self)℄ , name = ' original task ')

19)

20

21 return FWA
tion (detours = wf)

22

23 elif returnCode == 200:

24 print term .
yan + '' Performing Design of Experiments '' + term . normal

25 model = modena . SurrogateModel .load Failing ()

26

27 # Continue with exa
t tasks , parameter estimation ,

28 # and (finally) this

29 # task in order to resume normal operation

30 wf = model . outOfBoundsStrategy (). workflow (

31 model ,

32 outsidePoint = model .outsidePoint

33)

34 wf .add AfterAll (

35 Workflow2 ([Firework (self)℄ , name = ' original task ')

36)

37

38 return FWA
tion (detours = wf)

39

40 elif returnCode > 0:

3

41 print ('An error o

urred ')

42 sys . exit (returnCode)

43

44 else :

45 print (' Su

ess - We are done ')

46 return FWA
tion ()

Listing 2: The s
ript
ontains the framework implementation of a ba
kward mapping task whi
h

keeps tra
k of the error
odes from the simulations in the framework.

The
lass Ba
kwardMappingS
riptTask in Listing 4 represents the main simulation that the user wants

to perform. From the user perspe
tive the simulation is an exe
utable �le, e.g. line 2 in Listing 3, with

a fun
tion returning the appropriate error
odes if one of the surrogate models that are used is out of

bounds.

1 m = Ba
kwardMappingS
riptTask (

2 s
ript = ' nameOfExe
utableFile '

3)

Listing 3: The
ode blo
k shows an example shows how the user would spe
ify a s
ript, whi
h
ontains

alls to various surrogate models, whi
h the framework should simulate.

The underlying Ba
kward Mapping S
ript Task in the framework uses the s
ript parameter in line

4, whi
h is automati
ally exe
uted by Fireworks due to the run_task method in line 6. The error

ode from the simulation is passed to the handleReturnCode fun
tion when the simulation terminates;

whi
h, is available be
ause of the inheritan
e of the Ba
kward Mapping Task
lass from line 2 in Listing

2.

1 �expli
it_serialize

2
lass Ba
kwardMappingS
riptTask (S
riptTask , Ba
kwardMappingTask):

3

4 required_params = [' s
ript '℄

5

6 def run_task (self , fw_spe
):

7 print (

8 term . yellow

9 + '' Performing ba
kward mapping simulation (ma
ros
opi

ode re
ipe) ''

10 + term . normal

11)

12

13 self [' defuse_bad_r
 '℄ = True

14

15 # Exe
ute the ma
ros
opi

ode by
alling fun
tion in base
lass

16 ret = super (Ba
kwardMappingS
riptTask , self) .run_task (fw_spe
)

17

18 return self . handleReturnCode (ret . stored_data [' return
ode '℄)

Listing 4: The
ode blo
k shows the implementation of a ba
kward mapping s
ript task whi
h

performs a simulation.

This se
tion summarised how the framework base
lasses fa
ilitate the ba
kward mapping by allow-

ing the simulation, i.e. the Ba
kward Mapping S
ript Task, to �fail� in order to perform design of

experiments and parameter �tting a

ording to the Ba
kward Mapping S
ript before re-starting the

simulation.

2.2.1 Framework-level ba
kward mapping surrogate model de�nition

Se
tion 2.2 explained how the framework fa
ilitates the main simulation to be halted in order to perform

design of experiments and parameter �tting. Moreover, Listing 1 it was introdu
ed how the
on
ept of

4

strategies is used by the MoDeNa framework to allow the user to spe
ify how the ba
kward mapping

is performed without writing
ode, but simply by ��lling in the blanks�.

However, the se
tion did not explain how the Ba
kward Mapping Model uses the strategies and how

the database is being kept up-to-date. The Ba
kward Mapping Model
lass, shown in Listing 5, is

substantial, and this se
tion will outline how the
lass is used in the framework. Even though the inner

workings of the
ode will not be explained in detail it will be emphasised whi
h part of the
ode, i.e.

the methods of the
lass, is responsible for instantiation, parameter �tting et
.

There are a total of nine methods de�ned in the Ba
kward Mapping Model:

__init__ (line 11): Instantiate a new surrogate model obje
t, use a model from database if possible,

otherwise
reate a new model based on the input e.g. from Listing 1.

exa
tTasks (line 98): Build a work�ow to ex
ute an exa
tTask for ea
h point.

initiationStrategy (line 125): Load the initialisation strategy

parameterFittingStrategy (line 131): Load the parameter �tting strategy

outOfBoundsStrategy (line 137): Load the out of bounds strategy

updateFitDataFromFwSpe
 (line 143): Update database with new parameters

updateMinMax (line 160): Update database with new surrogate model min/max boundaries

error (line 179): Cal
ulate the error between the exa
t simulation and the surrogate fun
tion

extendedRange (line 196): Expand the domain of the surrogate model

The reader is left to
onsider the
ode for the Ba
kward Mapping Model in Listing 5 without further

adue. However, instead of reading the
ode line-by-line lo
ate the methods listed above above; more-

over, pay spe
ial attention to how the methods loading a parti
ular strategy refers dire
tly to the keys

that are used in the user-level example in Listing 1.

1
lass Ba
kwardMappingModel (SurrogateModel):

2

3 # Database definition

4 inputs = MapField (EmbeddedDo
umentField (MinMaxArgPosOpt))

5 outputs = MapField (EmbeddedDo
umentField (MinMaxArgPosOpt))

6 fitData = MapField (ListField (FloatField (required = True)))

7 substituteModels = ListField (Referen
eField (SurrogateModel))

8 outsidePoint = EmbeddedDo
umentField (EmbDo
)

9 meta = { ' allow_inheritan
e ': True }

10

11 def __init__ (self , * args , ** kwargs):

12 SurrogateModel .__init__ (self , * args , ** kwargs)

13

14 if kwargs .has_key (' _
ls '):

15 Dynami
Do
ument .__init__ (self , * args , ** kwargs)

16

17 else :

18 if not kwargs .has_key (' _id '):

19 raise Ex
eption ('Need _id ')

20 if not kwargs .has_key (' surrogateFun
tion '):

21 raise Ex
eption ('Need surrogateFun
tion ')

22 if not isinstan
e (kwargs [' surrogateFun
tion '℄, SurrogateFun
tion):

23 raise TypeError ('Need surrogateFun
tion ')

24

5

25 kwargs [' inherited_inputs '℄ = 0

26

27 kwargs [' fitData '℄ = {}

28 kwargs [' inputs '℄ = {}

29 for k , v in kwargs [' surrogateFun
tion '℄. inputs .iteritems ():

30 kwargs [' inputs '℄[k℄ = v. to_mongo ()

31

32 kwargs [' outputs '℄ = {}

33 for k , v in kwargs [' surrogateFun
tion '℄. outputs .iteritems ():

34 kwargs [' fitData '℄[k℄ = [℄

35 kwargs [' outputs '℄[k℄ = MinMaxArgPosOpt (**{})

36

37 subOutputs = {}

38 for m in kwargs [' substituteModels '℄:

39 if not isinstan
e (m , SurrogateModel):

40 raise TypeError (

41 ' Elements of substituteModels '

42 ' must be derived from SurrogateModel '

43)

44 subOutputs .update (m. outputsToModels ())

45

46 nInp = len (kwargs [' inputs '℄)

47 repla
ed = {}

48 while True :

49 found = None

50 for o in subOutputs :

51 if o in kwargs [' inputs '℄:

52 found = o

53 break

54

55 if found == None :

56 break

57

58 del kwargs [' inputs '℄[o℄

59 for k , v in subOutputs [o ℄. inputs .iteritems ():

60 if not k in kwargs [' inputs '℄:

61 kwargs [' inputs '℄[k℄ = { ' argPos ': nInp }

62 nInp += 1

63

64 nInputs = 0

65 for k , v in kwargs [' inputs '℄ .iteritems ():

66 kwargs [' fitData '℄[k℄ = [℄

67 kwargs [' inputs '℄[k℄ = MinMaxArgPosOpt (** v)

68

69
he
kAndConvertType (kwargs , ' exa
tTask ', FireTaskBase);

70

71
he
kAndConvertType (

72 kwargs ,

73 ' initialisationStrategy ',

74 InitialisationStrategy

75);

76

77
he
kAndConvertType (

78 kwargs ,

79 ' outOfBoundsStrategy ',

80 OutOfBoundsStrategy

81);

82

83
he
kAndConvertType (

84 kwargs ,

85 ' parameterFittingStrategy ',

86 ParameterFittingStrategy

87);

88

89 Dynami
Do
ument .__init__ (self , * args , ** kwargs)

6

90

91 indi
es = self . parseIndi
es ()

92 for k ,v in indi
es .iteritems ():

93 kwargs [' surrogateFun
tion '℄. indi
es [k℄ .get _index (v)

94

95 self . save ()

96

97

98 def exa
tTasks (self , points):

99

100 indi
es = self . parseIndi
es ()

101

102 # De - serialise the exa
t task from di
t

103 et = load_obje
t (self . meth_exa
tTask)

104

105 tl = [℄

106 e = six .next (six .itervalues (points))

107 for i in xrange (len (e)):

108 p = {}

109 for k in points :

110 p[k℄ = points [k ℄[i℄

111

112 for m in self . substituteModels :

113 p .update (m .
allModel (p))

114

115 t = et

116 t[' point '℄ = p

117 t[' indi
es '℄ = indi
es

118 fw = Firework (t)

119

120 tl .append (fw)

121

122 return Workflow2 (tl , name = ' exa
t tasks for new points ')

123

124

125 def initialisationStrategy (self):

126 return loadType (self ,

127 ' initialisationStrategy ',

128 InitialisationStrategy)

129

130

131 def parameterFittingStrategy (self):

132 return loadType (self ,

133 ' parameterFittingStrategy ',

134 ParameterFittingStrategy)

135

136

137 def outOfBoundsStrategy (self):

138 return loadType (self ,

139 ' outOfBoundsStrategy ',

140 OutOfBoundsStrategy)

141

142

143 def updateFitDataFromFwSpe
 (self , fw_spe
):

144 for k in self . inputs : # Load the fitting data

145 if fw_spe
 [k ℄[0℄ .__
lass__ == list :

146 self . fitData [k℄ .extend (fw_spe
 [k ℄[0℄)

147 else :

148 self . fitData [k℄ .extend (fw_spe
 [k ℄)

149

150 for k in self . outputs :

151 if fw_spe
 [k ℄[0℄ .__
lass__ == list :

152 self . fitData [k℄ .extend (fw_spe
 [k ℄[0℄)

153 else :

154 self . fitData [k℄ .extend (fw_spe
 [k ℄)

7

155

156 firstSet = six .next (six .itervalues (self . fitData)) # Get first set

157 self . nSamples = len (firstSet)

158

159

160 def updateMinMax (self):

161 if not self . nSamples :

162 for v in self . inputs .values ():

163 v. min = 9 e99

164 v. max = -9 e99

165

166 for v in self . outputs .values ():

167 v. min = 9 e99

168 v. max = -9 e99

169

170 for k , v in self . inputs .iteritems ():

171 v. min = min (self . fitData [k ℄)

172 v. max = max (self . fitData [k ℄)

173

174 for k , v in self . outputs .iteritems ():

175 v. min = min (self . fitData [k ℄)

176 v. max = max (self . fitData [k ℄)

177

178

179 def error (self ,
Model , ** kwargs):

180 idxGenerator = kwargs .pop (' idxGenerator ', xrange (self . nSamples))

181

182 in_i = list ()

183 i = [0℄ * (1 + self .inputs_max_argPos ())

184

185 output = self . fitData [six .next (six .iterkeys (self . outputs))℄

186

187 for j in idxGenerator :

188 for k , v in self . inputs .iteritems ():

189 i[v. argPos ℄ = self . fitData [k ℄[j℄ # Load inputs

190

191 out =
Model .
all (in_i , i) # Call the surrogate model

192

193 yield out [0℄ - output [j℄

194

195

196 def extendedRange (self , outsidePoint , expansion_fa
tor =1.2):

197

198 sampleRange = {}

199

200 for k , v in self . inputs .iteritems ():

201 sampleRange [k℄ = {}

202 outsideValue = outsidePoint [k℄

203

204 # If the value outside point is outside the range , set the

205 # '' lo
aldi
t '' max to the outside point value

206

207 if outsideValue > v['max '℄:

208 sampleRange [k ℄[' min '℄ = v[' max '℄

209 sampleRange [k ℄[' max '℄ = min (

210 outsideValue * expansion_fa
tor ,

211 self . surrogateFun
tion . inputs [k ℄. max

212)

213

214 elif outsideValue < v[' min '℄:

215 sampleRange [k ℄[' min '℄ = max (

216 outsideValue / expansion_fa
tor ,

217 self . surrogateFun
tion . inputs [k ℄. min

218)

219 sampleRange [k ℄[' max '℄ = v[' min '℄

8

220

221 else :

222 sampleRange [k ℄[' min '℄ = v[' min '℄

223 sampleRange [k ℄[' max '℄ = v[' max '℄

224

225 return sampleRange

Listing 5: The
ode blo
k shows the implementation of the ba
kward mapping surrogate model

in the MoDeNa framework. The
lass is made up of a total of nine methods: __init__ (line

11), exa
tTasks (line 98), initiationStrategy (line 125), parameterFittingStrategy (line

131), outOfBoundsStrategy (line 137), updateFitDataFromFwSpe
 (line 143), updateMinMax

(line 160), error (line 179) and extendedRange (line 196). The ba
kward mapping model

onne
ts the database, MoDeNa framework and Fireworks by providing strategies to the Fireworks,

saving and retrieving data from the database and
alling the low-level C-fun
tion implemented in

the surrogate fun
tion.

Not even the Ba
kward Mapping Model represents �the bottom of the barrel� of the MoDeNa frame-

work, there is yet another layer of abstra
tion indi
ated by the inheritan
e of Surrogate Model in line

1. Instead of explaining the details of the
ode blo
k the next se
tion will visualise how and when the

di�erent methods are
alled during di�erent stages of the ba
kward mapping pro
edures.

2.3 Ba
kward Mapping Work�ow

The model-based design of experiments (MBDoD) work�ow, outlined in Figure 1, is
entral to the

ba
kward mapping strategies of the MoDeNa framework. Imagine that a simulation of a Ba
kward

Design Space

Design of

Experiments

Run Complex

Simulations

Get Sampled Data

Model Fitting

Error

Criteria

satisfied?

Surrogate

Model

Yes

No

Figure 1: Illustration of model-based design of experiments
omputational work�ow.

Mapping S
ript Task akin to the example in Listing 3, whi
h uses a ba
kward mapping surrogate

9

./figures/example_flowsheet.eps

model similar to that of Listings 1. Firstly, a

ording to line 16 in Listing 4, the Ba
kward Mapping

S
ript Task is started. However, if a surrogate model has not yet been instantiated the simulation

fail immediately, throwing error
ode 201 in the pro
ess. The error
ode is passed to the return
ode

handler in the Ba
kward Mapping Task in Listing 2, where the boolean
he
k in line 7 is triggered.

This will
ause the framework to instantiate all ne
essary models, loading the initialistation

strategy using the method in line 125. The initialisation in Listing 1 spe
i�es whi
h points the

initialisation should be performed in, shown as bla
k points in Figure 2. The initialisation strategy

alls the exa
tTasks in line 98 of the Ba
kward Mapping Model (Listing 4), whi
h
reates a work�ow

whi
h performs all the exa
t simulations and saves the data, thus turning the points blue. After the

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc
bc

Figure 2: The �gure illustrates the initialisation of a surrogate model by �lling the design spa
e of the

model with points that should be explored further. The framework simulates the points and performs

parameter �tting of the surrogate fun
tion using a subset of the simulations. The rest of the points

are used in order to validate the surrogate model.

exa
t simulations have been performed, the surrogate fun
tion is �tted to the input-output data. The

user-spe
i�ed parameter �tting strategy from Listing 4 is loaded using the method in line 131 from

Listing 4, and the nonlinear regression results in a set of parameters that is veri�ed against a subset

of the simulated points that where not used in the �tting pro
edure.

The validation pro
edure uses the error method in line 179 in Listing 5 in order to evaluate the

error between the surrogate fun
tion and the exa
t simulation. In the
ase where all the points are

a

epted (green) the model is ready to be used. However, if a point is reje
ted it is ne
essary to

perform additional simulations. This situation is illustrated in Figure 3, whi
h shows that when the

parameters are reje
ted, the framework adds more points to the design spa
e, keeping the points that

have already been simulated, and performs the exa
t simulation only for the new points. This pro
edure

will be repeated, adding points, �tting the surrogate fun
tion and performing validation until the error

riterion is satis�ed. The simulation in the Ba
kward Mapping S
ript Task will automati
ally start

and the MoDeNa framework
an now evaluate the surrogate fun
tion inside domain, this is illustrated

using by the brown traje
tory in Figure 4. When the surrogate model rea
hes the boundary of the

validated design spa
e the simulation will terminate, throwing error 200, whi
h triggers any surrogate

model that is �out of bounds� to expand the domain by loading the out of bounds strategy using

the method from Listing 5 in line 137.

The framework
an for instan
e expand the domain by 20%, and try to �t the surrogate fun
tion by

adding simulations to a new domain and �t the surrogate fun
tion globally over both the old and new

domains as illustrated in �gure 5. When the surrogate model has been validated the simulation is

automati
ally re-started, and the pro
ess
ontinues to the simulation is
omplete. The introdu
tion

10

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc
bc

Figure 3: The �gure illustrates how a subset of the simulated points is used for the validation of

the surrogate model, note that the subset that is used for the validation is not used for �tting the

parameters of the surrogate fun
tion. The input-output of the surrogate fun
tion and the simulation

is
ompared and
he
ked against an error
riterion, ea
h point is either reje
ted or validated. In the

ase that any of the points are reje
ted, the framework will employ a strategy for improving the error

of the surrogate model, adding new points to the domain in an attempt that in
reasing the resolution

will generate a better �t for the parameters of the surrogate fun
tion.

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

Figure 4: The �gure illustrates that only a subset of the simulated points, not used for the parameter

�tting of the surrogate fun
tion, is used for validation. When the surrogate model has been validated

for a domain it
an be evaluated, in this example allong a traje
tory, untill it rea
hes the bounds of

the domain.

of strategies into the MoDeNa framework is a result of
ooperation between the
ontributors in work

pa
kage 4 and 5. Even though it is a more abstra
t implementation than a standalone ba
kward

mapping module it has ultimately lead to a mu
h more �exible implementation that
an easily be

modi�ed and extended depending on the needs of the user. Moreover, it has intertwined MoDeNa,

MongoDB and Fireworks into a more
omplete modelling tool whi
h
an be said to �speak the language

of multi-s
ale modelling�.

3 Strategies

A strategy in the MoDeNa framework is a way of introdu
ing event handling into the simulation.

Instead of having one
entralised event-handler, every surrogate model is allowed to in�uen
e the

11

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc bc
bc

bc

bc bc
bc

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc bc

Figure 5: The �gure illustrates the pro
ess of a simulation, where the surrogate fun
tion has been used

along the traje
tory, has been stopped, and the domain for the surrogate model is expanded to the

dotted lines. New points are added to the domain and exa
t simulations are performed at every point

before the surrogate fun
tion is �tted and validation globally a
ross the entire domain. Afterwards,

the simulation is re-started, and the pro
ess
ontinues until the simulation is
omplete.

omputational work�ow a

ording to their needs; thus the event handling is impli
itly handled by

Fireworks, whi
h happily exe
utes the
omputational work�ows as they are introdu
ed.

From a framework perspe
tive a strategy represents a ex
hangeable blo
k of
ode. The ba
kward

mapping model in Listings 1
ould for instan
e
hange the initialisation strategy in line 6 with a di�erent

one, e.g. �Initial Data� whi
h initialises a model given the input-output data without exe
uting the

exa
t task. Moreover, the strategy for the parameter �tting, whi
h is where the ba
kward mapping is

performed,
an also be
hanged.

All-in-all the introdu
tion of strategies has allowed the framework to be
ome more modularised than

with an external ba
kward mapping module, espe
ially sin
e new strategies for design of experiments

and parameter �tting
an easily be formulated as ne
essary be
ause the framework uses the R-statisti
al

language.

3.1 Fundamental Framework Implementation

The framework-level implementation of strategies is divided into two-pie
es, e.g. for initialisation:

Initialisation Strategy in Listing 6, i.e. the base-
lass for the di�erent initialisation methods, and

Initialisation in Listing 7 whi
h
reates a FireTask for the initialisation strategy.

The Initialisation Strategy in Listing 6 is intended to serve as a base-
lass for spe
i�
 initialisation

strategies, i.e. it should be inherited by other
lasses. This
an be seen in the method new Points in

line 8, whi
h must be overwritten by the
hild-
lass as shown in the example implementation in Listing

8. However, the main fun
tionality of the Initialisation Strategy is provided by the workflow

method in line 12, whi
h generates a work�ow for the initialisation that
an be exe
uted by Fireworks.

Note that the link between the Initialisation Strategy and the Initialisation FireTask is that

the purpose of the latter is to
all the workflow method of the �rst. This happens due to the run_task

on line 13 in Listing 7, whi
h is automati
ally exe
uted by Fireworks.

1
lass InitialisationStrategy (defaultdi
t , FWSerializable):

2

3 def __init__ (self , * args , ** kwargs):

4 di
t .__init__ (self , * args , ** kwargs)

5

12

6

7 �ab
 . abstra
tmethod

8 def newPoints (self):

9 raise NotImplementedError ('' newPoints not implemented ! '')

10

11

12 def workflow (self , model):

13 p = self . newPoints ()

14 if len (p):

15 wf = model .exa
tTask s(p)

16 wf .add AfterAll (model . parameterFittingStrategy (). workflow (model))

17 return wf

18 else :

19 return Workflow2 ([℄)

20

21

22 �serialize_fw

23 �re
ursive_serialize

24 def to_di
t (self):

25 return di
t (self)

26

27

28 �
lassmethod

29 �re
ursive_deserialize

30 def from_di
t (
ls , m_di
t):

31 return
ls (m_di
t)

32

33

34 def __repr__ (self):

35 return ' <{} >:{} '. format (self . fw_name , di
t (self))

Listing 6: The
ode blo
k shows the generi
 base-
lass (mother-
lass) for the di�erent initialisation

strategies in the MoDeNa framework. The reason why it should be
onsidered a base-
lass is that

it will not work stand-alone. Instead the
lass must be inherited by a
hild-
lass, whi
h should

overwrite the newPoints method in Line 8; thus, the di�eren
e between the di�erent initialisation

strategies is largely their implementation of newPoints. The purpose of the
lass is to return the

ne
essary workflow in order to initialise a surrogate model, this is done when the workflow in line

12 is
alled. The approa
h of using base-
lasses that returns the ne
essary work�ow in order to

perform initialisation, parameter �tting et
. is
arried out for all the di�erent types of strategies

in the MoDeNa framework, whi
h makes it easy to implement new strategies. Generally, it is only

ne
essary to implement one method in order to
reate a new strategy when the respe
tive base-
lass

is inherited. The �magi
� of integrating the strategy into the MoDeNa work�ow will thereby be

handled by the base
lass.

The Initialisation FireTask in Listing 7 is a
ts as a bu�er between the Initialisation Strategy

and the Fireworks work�ow; thus allowing the work�ow to be modi�ed as ne
essary instead of always

exe
uting the same pro
edure.

1 �expli
it_serialize

2
lass Initialisation (FireTaskBase):

3

4 def __init__ (self , * args , ** kwargs):

5 FireTaskBase .__init__ (self , * args , ** kwargs)

6

7 if kwargs .has_key (' surrogateModel '):

8 if isinstan
e (kwargs [' surrogateModel '℄, modena . SurrogateModel):

9 self [' surrogateModelId '℄ = kwargs [' surrogateModel '℄[' _id '℄

10 del self [' surrogateModel '℄

11

12

13 def run_task (self , fw_spe
):

14 print term .
yan + '' Performing initialisation '' + term . normal

13

15

16 model = modena . SurrogateModel .load (self [' surrogateModelId '℄)

17

18 return FWA
tion (

19 detours = model . initialisationStrategy (). workflow (model)

20)

Listing 7: The
ode blo
k shows the implementation of the Initialisation FireTask, whose purpose

is to
all the workwlowmethod of the initialisation strategy that belongs to the surrogate model;

thereby, the
lass tells Fireworks to take a detour in order to exe
ute the work�ow that is ne
essary

in order to instantiate the model. The parameter �tting, out of bounds and improve error strategies

employs a similar implementation, albeit with subtile diferen
es.

The parameter �tting, out of bounds and improve error strategies all follow a similar generi
 framework

implementation in that there is one FireTask similar to that of Listing 7, and a base-
lass, su
h as

the one in Lsiting 6, that is responsible for generating the work�ow for the strategy. The spe
i�

implementation of the strategies themselves are naturally very di�erent, but all inherit their respe
tive

base-
lass as shown in line 2 in Listing 8.

3.2 Spe
i�
 Strategy Implementation Example

The initialisation strategy used in Listing 1 was
alled Initial Points, the implementation of that

strategy is shown in Listing 8. Line 8 in Listing 6 implies that any new initialisation strategy is required

to implement the method new Points, whi
h is used by the method that generates the workflow for

the initialisation in line 12.

1 �expli
it_serialize

2
lass InitialPoints (InitialisationStrategy):

3

4 def __init__ (self , * args , ** kwargs):

5 InitialisationStrategy .__init__ (self , * args , ** kwargs)

6

7 def newPoints (self):

8 return self [' initialPoints '℄

Listing 8: The
ode blo
k shows the implementation of the initialisation strategy
orresponding to

the user providing the framework with spe
i�
 input points, whi
h the framework then will perform

simulations before �tting the surrogate fun
tion to the input-output data.

The framework
urrently have two generi
 initialisation strategies implemented in addition to Initial

Points: Initial Data, where the user provides both input and output, and Empty Initialisation

Strategy whi
h does nothing. The latter is primarily used for forward mapping models.

4 Ba
kward mapping in pra
ti
e

The two-tank example that was presented in deliverable 5.5 exempli�es how the ba
kward mapping is

automati
ally performed as a part of the work�ow. The example is designed to show the stru
ture of

the framework using a simple model of air, whi
h is being dis
harged through a valve from one reservoir

to another. From a MoDeNa perspe
tive the �ow through the nozzle must be
onsidered as a
omplex

problem, su
h as a 3D Computational FluidDynami
s or a di�erent detailed model. Consequently, the

two reservoirs are ma
ros
opi
 models and the rate of dis
harge of �uid through the nozzle represents

a mi
ros
opi
 model. It demonstrated ba
kward mapping be
ause the domain of the inputs where

14

assumed to be unknown a priori; therefore the simulation had to expand the design spa
e for the

"ba
kward mapping model" throughout the simulation,

The �nal result of the simulation was the plot in Figure 6, whi
h shows how the pressure of the

reservoirs varies with respe
t to time. From the
omplete simulation results it is not possible to see

that the ma
ros
opi
 model used a surrogate model that was �tted and re-�tted. In order to show

Figure 6: Pressures in ea
h of the two reservoirs as a fun
tion of time.

that the parameters of the surrogate fun
tion where
hanging dynami
ally throughout the simulation,

Figure 7 shows how the value of the parameters
hange with respe
t to the iteration number. This is

helpful espe
ially in identifying parts of the design spa
e where the surrogate model provides a good

approximation.

Figure 7: Model parameters as fun
tion of the number of ba
kward mapping iterations.

15

./figures/pressureplot.eps
./figures/plotparams.eps

	Contents
	1 Introduction
	2 Backward Mapping Models in the MoDeNa Framework
	2.1 User-level Backward Mapping Model
	2.2 The Backward Mapping FireTask
	2.2.1 Framework-level backward mapping surrogate model definition

	2.3 Backward Mapping Workflow

	3 Strategies
	3.1 Fundamental Framework Implementation
	3.2 Specific Strategy Implementation Example

	4 Backward mapping in practice

