
Delivery date:

31-08-2015

Authors:

Sigve Karolius

MoDeNa

Deliverable D4.3

Bakward Mapping Tool

Prinipal investigators:

Sigve Karolius

Heinz A Preisig

Henrik Rushe

Dominik Christ

Hrvoje Jasak

Collaborators:

Cansu Birgen

Projet oordinator:

Heinz A Preisig

heinz.preisig�hemeng.ntnu.no

Abstrat:

MoDeNa implements the onept of surrogate models that represent

approximation of omplex models. The surrogate model is �tted to

the behaviour of the omplex models using standard tehniques. One

identi�ed, the surrogate an be used to replae the omplex model

with the objetive to redue the omputational load. Fitting is done

on demand, i.e. the model requesting the surrogate is ontrolling

the domain in whih the surrogate is �tted and th strategy on how

the domain is being extended and what error riterion is used. The

implementation works reursively over the sales.

ii

© 2015

MoDeNa

iii

Contents

1 Introdution 1

2 Bakward Mapping Models in the MoDeNa Framework 1

2.1 User-level Bakward Mapping Model . 2

2.2 The Bakward Mapping FireTask . 3

2.2.1 Framework-level bakward mapping surrogate model de�nition 4

2.3 Bakward Mapping Work�ow . 9

3 Strategies 11

3.1 Fundamental Framework Implementation . 12

3.2 Spei� Strategy Implementation Example . 14

4 Bakward mapping in pratie 14

iv

1 Introdution

The term bakward mapping refers to omparing the output from a surrogate model to that of the

orresponding exat model. However, in order to larify the syntax of the omputer ode in the MoDeNa

framework, the ode employs a terminology for the surrogate model that is somewhat di�erent: From

a programming perspetive the implementation of a surrogate model must inlude a allable funtion;

therefore, the framework distinguishes between the surrogate funtion, i.e. the allable funtion, and

the surrogate model.

The reason for the design hoie was to failitate the implementation of surrogate models with di�erent

properties, e.g. bakward mapping apabilities. Consequently, bakward mapping is not a standalone

module in the MoDeNa framework, but rather implemented as a property of the surrogate model itself.

There are two kinds of surrogate models in the MoDeNa framework: bakward mapping and forward

mapping models. Only the bakward mapping model an ompare the output from the surrogate

funtion to that of the exat model, thus validating the parameters of the surrogate funtion.

Sine the bakward mapping task itself is simply to ompare the input-output from the surrogate

funtion to that of the exat simulation, i.e. after it the surrogate funtion parameters have been

�tted, the proedure itself is dependent on the design of experiments and parameter �tting. The

standalone features of the framework is therefore the design of experiments and parameter �tting

modules, whih are independent from one another; therefore, in order to make the framework more

modular, the onept of strategies was introdued. This allows the user to hoose the strategies for

design of experiments and parameter �tting. Moreover, the R statistial language is used as a bakend

for statistial methods of design of experiments and nonlinear regression, thus making it quiker to

implement spae �lling designs, regression and statistial methods.

The report will explain how the bakward mapping proedure is integrated into the MoDeNa frame-

work, and elaborate on the strategies that allow for the �exible instantiation. Further it desribes the

integration of the omputational reipes written in the R statistial language.

2 Bakward Mapping Models in the MoDeNa Framework

From the users perspetive the bakward mapping apabilities of the MoDeNa framework are failitated

by adding strategies spei� to: initialisation, design of experiments, and parameter �tting as shown

in Listing 1. This design hoie has been made primarily for two reasons:

• Easy to use and understand

• Quik implementation and integration of new modules

This setion will introdue the big piture of the tehnial aspets behind the implementation of the

�Bakward Mapping Model�, i.e. the bakward mapping tool, in order to avoid getting aught up in

oding-spei� details related to the implementation. The report will therefore spei�ally fous on

explaining how the MoDeNa framework implementation integrates into:

1. Fireworks

• FireTask

• Work�ow

2. MongoDB

1

• Looking up surrogate models

• Updating the database

3. The low-level C-Framework

2.1 User-level Bakward Mapping Model

The �bakward mapping model� lass in the MoDeNa framework is responsible for handling surrogate

models that require bakward mapping. For the purpose of ompleteness, note that the framework

also de�nes a �forward mapping model�; whih, as the name ditates, does not failitate any bakward

mapping apabilities.

The ode blok in Listing 1 shows an example of how the user will de�ne a bakward mapping model.

In addition to speify strategies for: initialisation, design of experiments and parameter �tting, the user

has to suply a name, surrogate funtion and exat task. The latter is the simulation whose input-output

data the surrogate models parameter will be �tted to.

1 m = BakwardMappingModel (

2 _id = ' flowRate ',

3 surrogateFuntion = f ,

4 exatTask = FlowRateExatSim () ,

5 substituteModels = [℄,

6 initialisationStrategy = Strategy .InitialPoints (

7 initialPoints =

8 {

9 'D ': [0.01 , 0.01 , 0.01 , 0.01℄ ,

10 ' rho0 ': [3.4 , 3.5 , 3.4 , 3.5℄ ,

11 'p0 ': [2.8 e5 , 3.2 e5 , 2.8 e5 , 3.2 e5 ℄,

12 ' p1Byp0 ': [0.03 , 0.03 , 0.04 , 0.04℄ ,

13 },

14),

15 outOfBoundsStrategy = Strategy .ExtendSpaeStohastiSampling (

16 nNewPoints = 4

17),

18 parameterFittingStrategy = Strategy .NonLinFitWithErrorContol (

19 testDataPerentage = 0.2 ,

20 maxError = 0.05 ,

21 improveErrorStrategy = Strategy .StohastiSampling (

22 nNewPoints = 2

23),

24 maxIterations = 5 # Currently not used

25),

26)

Listing 1: The ode blok shows an example of an instantiation of a bakward mapping surrogate

��owRate�. The surrogate model is instantiated using notation equivalent to a JSON doument

where every key has an assoiated value. The model de�nes a �surrogate funtion� in line 3, whose

parameters will be �tted to the input-output data of the �exatTask� in line 4. The strategies in

lines: 6, 15, 18 and 21 are triggered by events during the simulation.

Note that from the user perspetive, just by looking at the de�nition in Listing 1, it is not at all

obvious how the underlying framework works. From this setion it should be noted that the behaviour

of the bakward mapping model, i.e. the strategies for initialisation et., is spei�ed by the user using

strategies. Consequently, it an be onluded that there are �slots� in the underlying framework, i.e.

�missing� bloks of ode that are designed to be ompleted by the user, alled strategies.

2

2.2 The Bakward Mapping FireTask

In order to perform the atual bakward mapping, i.e. ompare output from the surrogate funtion,

e.g. line 3 from Listing 1, to that of the exat model, suh as the one de�ned in line 4, it is neessary

to start a FireTask that an override the main work�ow of the simulation. The reason for this is that

if the bakward mapping is being performed by a surrogate model it is beause the parameters of the

model are no longer valid and are in the proess of being updated. It is therefore logial that the

simulation using the surrogate model annot ontinue.

The MoDeNa framework therefore introdues two lasses: Bakward Mapping Task and Bakward

Mapping Sript Task. The latter is the FireTask that Fireworks exeutes in order to handle the

overall simulation, and the �rst is a wrapper whih analyses the output from the simulation when an

error ours, and modi�es the work�ow aordingly.

The Bakward Mapping Task in Listing 2 only ontains one method, handleReturnCode, whih athes

the output from the main simulation and takes ation aordingly. There are urrently two ways the

main simulation an exit and be aught by the framework using error odes 201 and 200 for referring

to instantiation or a surrogate model being out of bounds in lines 7 and 23 respetively. Any other

error ode will, aording to line 40, terminate the the simulation with an error, �nally the simulation

ontinues until it has sueeded in line 44.

1 lass BakwardMappingTask :

2

3 def handleReturnCode (self , returnCode):

4

5 # Analyse return ode

6 print (' return ode = %i ' % returnCode)

7 if returnCode == 201:

8 print term . yan + '' Performing Initialisation '' + term . normal

9 model = modena . SurrogateModel .load FromModule ()

10

11 # Continue with exat tasks , parameter estimation ,

12 # and (finally) this

13 # task in order to resume normal operation

14

15 print model . initialisationStrategy ()

16 wf = model . initialisationStrategy (). workflow (model)

17 wf .add AfterAll (

18 Workflow2 ([Firework (self)℄ , name = ' original task ')

19)

20

21 return FWAtion (detours = wf)

22

23 elif returnCode == 200:

24 print term . yan + '' Performing Design of Experiments '' + term . normal

25 model = modena . SurrogateModel .load Failing ()

26

27 # Continue with exat tasks , parameter estimation ,

28 # and (finally) this

29 # task in order to resume normal operation

30 wf = model . outOfBoundsStrategy (). workflow (

31 model ,

32 outsidePoint = model .outsidePoint

33)

34 wf .add AfterAll (

35 Workflow2 ([Firework (self)℄ , name = ' original task ')

36)

37

38 return FWAtion (detours = wf)

39

40 elif returnCode > 0:

3

41 print ('An error ourred ')

42 sys . exit (returnCode)

43

44 else :

45 print (' Suess - We are done ')

46 return FWAtion ()

Listing 2: The sript ontains the framework implementation of a bakward mapping task whih

keeps trak of the error odes from the simulations in the framework.

The lass BakwardMappingSriptTask in Listing 4 represents the main simulation that the user wants

to perform. From the user perspetive the simulation is an exeutable �le, e.g. line 2 in Listing 3, with

a funtion returning the appropriate error odes if one of the surrogate models that are used is out of

bounds.

1 m = BakwardMappingSriptTask (

2 sript = ' nameOfExeutableFile '

3)

Listing 3: The ode blok shows an example shows how the user would speify a sript, whih ontains

alls to various surrogate models, whih the framework should simulate.

The underlying Bakward Mapping Sript Task in the framework uses the sript parameter in line

4, whih is automatially exeuted by Fireworks due to the run_task method in line 6. The error

ode from the simulation is passed to the handleReturnCode funtion when the simulation terminates;

whih, is available beause of the inheritane of the Bakward Mapping Task lass from line 2 in Listing

2.

1 �expliit_serialize

2 lass BakwardMappingSriptTask (SriptTask , BakwardMappingTask):

3

4 required_params = [' sript '℄

5

6 def run_task (self , fw_spe):

7 print (

8 term . yellow

9 + '' Performing bakward mapping simulation (marosopi ode reipe) ''

10 + term . normal

11)

12

13 self [' defuse_bad_r '℄ = True

14

15 # Exeute the marosopi ode by alling funtion in base lass

16 ret = super (BakwardMappingSriptTask , self) .run_task (fw_spe)

17

18 return self . handleReturnCode (ret . stored_data [' returnode '℄)

Listing 4: The ode blok shows the implementation of a bakward mapping sript task whih

performs a simulation.

This setion summarised how the framework base lasses failitate the bakward mapping by allow-

ing the simulation, i.e. the Bakward Mapping Sript Task, to �fail� in order to perform design of

experiments and parameter �tting aording to the Bakward Mapping Sript before re-starting the

simulation.

2.2.1 Framework-level bakward mapping surrogate model de�nition

Setion 2.2 explained how the framework failitates the main simulation to be halted in order to perform

design of experiments and parameter �tting. Moreover, Listing 1 it was introdued how the onept of

4

strategies is used by the MoDeNa framework to allow the user to speify how the bakward mapping

is performed without writing ode, but simply by ��lling in the blanks�.

However, the setion did not explain how the Bakward Mapping Model uses the strategies and how

the database is being kept up-to-date. The Bakward Mapping Model lass, shown in Listing 5, is

substantial, and this setion will outline how the lass is used in the framework. Even though the inner

workings of the ode will not be explained in detail it will be emphasised whih part of the ode, i.e.

the methods of the lass, is responsible for instantiation, parameter �tting et.

There are a total of nine methods de�ned in the Bakward Mapping Model:

__init__ (line 11): Instantiate a new surrogate model objet, use a model from database if possible,

otherwise reate a new model based on the input e.g. from Listing 1.

exatTasks (line 98): Build a work�ow to exute an exatTask for eah point.

initiationStrategy (line 125): Load the initialisation strategy

parameterFittingStrategy (line 131): Load the parameter �tting strategy

outOfBoundsStrategy (line 137): Load the out of bounds strategy

updateFitDataFromFwSpe (line 143): Update database with new parameters

updateMinMax (line 160): Update database with new surrogate model min/max boundaries

error (line 179): Calulate the error between the exat simulation and the surrogate funtion

extendedRange (line 196): Expand the domain of the surrogate model

The reader is left to onsider the ode for the Bakward Mapping Model in Listing 5 without further

adue. However, instead of reading the ode line-by-line loate the methods listed above above; more-

over, pay speial attention to how the methods loading a partiular strategy refers diretly to the keys

that are used in the user-level example in Listing 1.

1 lass BakwardMappingModel (SurrogateModel):

2

3 # Database definition

4 inputs = MapField (EmbeddedDoumentField (MinMaxArgPosOpt))

5 outputs = MapField (EmbeddedDoumentField (MinMaxArgPosOpt))

6 fitData = MapField (ListField (FloatField (required = True)))

7 substituteModels = ListField (RefereneField (SurrogateModel))

8 outsidePoint = EmbeddedDoumentField (EmbDo)

9 meta = { ' allow_inheritane ': True }

10

11 def __init__ (self , * args , ** kwargs):

12 SurrogateModel .__init__ (self , * args , ** kwargs)

13

14 if kwargs .has_key (' _ls '):

15 DynamiDoument .__init__ (self , * args , ** kwargs)

16

17 else :

18 if not kwargs .has_key (' _id '):

19 raise Exeption ('Need _id ')

20 if not kwargs .has_key (' surrogateFuntion '):

21 raise Exeption ('Need surrogateFuntion ')

22 if not isinstane (kwargs [' surrogateFuntion '℄, SurrogateFuntion):

23 raise TypeError ('Need surrogateFuntion ')

24

5

25 kwargs [' inherited_inputs '℄ = 0

26

27 kwargs [' fitData '℄ = {}

28 kwargs [' inputs '℄ = {}

29 for k , v in kwargs [' surrogateFuntion '℄. inputs .iteritems ():

30 kwargs [' inputs '℄[k℄ = v. to_mongo ()

31

32 kwargs [' outputs '℄ = {}

33 for k , v in kwargs [' surrogateFuntion '℄. outputs .iteritems ():

34 kwargs [' fitData '℄[k℄ = [℄

35 kwargs [' outputs '℄[k℄ = MinMaxArgPosOpt (**{})

36

37 subOutputs = {}

38 for m in kwargs [' substituteModels '℄:

39 if not isinstane (m , SurrogateModel):

40 raise TypeError (

41 ' Elements of substituteModels '

42 ' must be derived from SurrogateModel '

43)

44 subOutputs .update (m. outputsToModels ())

45

46 nInp = len (kwargs [' inputs '℄)

47 replaed = {}

48 while True :

49 found = None

50 for o in subOutputs :

51 if o in kwargs [' inputs '℄:

52 found = o

53 break

54

55 if found == None :

56 break

57

58 del kwargs [' inputs '℄[o℄

59 for k , v in subOutputs [o ℄. inputs .iteritems ():

60 if not k in kwargs [' inputs '℄:

61 kwargs [' inputs '℄[k℄ = { ' argPos ': nInp }

62 nInp += 1

63

64 nInputs = 0

65 for k , v in kwargs [' inputs '℄ .iteritems ():

66 kwargs [' fitData '℄[k℄ = [℄

67 kwargs [' inputs '℄[k℄ = MinMaxArgPosOpt (** v)

68

69 hekAndConvertType (kwargs , ' exatTask ', FireTaskBase);

70

71 hekAndConvertType (

72 kwargs ,

73 ' initialisationStrategy ',

74 InitialisationStrategy

75);

76

77 hekAndConvertType (

78 kwargs ,

79 ' outOfBoundsStrategy ',

80 OutOfBoundsStrategy

81);

82

83 hekAndConvertType (

84 kwargs ,

85 ' parameterFittingStrategy ',

86 ParameterFittingStrategy

87);

88

89 DynamiDoument .__init__ (self , * args , ** kwargs)

6

90

91 indies = self . parseIndies ()

92 for k ,v in indies .iteritems ():

93 kwargs [' surrogateFuntion '℄. indies [k℄ .get _index (v)

94

95 self . save ()

96

97

98 def exatTasks (self , points):

99

100 indies = self . parseIndies ()

101

102 # De - serialise the exat task from dit

103 et = load_objet (self . meth_exatTask)

104

105 tl = [℄

106 e = six .next (six .itervalues (points))

107 for i in xrange (len (e)):

108 p = {}

109 for k in points :

110 p[k℄ = points [k ℄[i℄

111

112 for m in self . substituteModels :

113 p .update (m .allModel (p))

114

115 t = et

116 t[' point '℄ = p

117 t[' indies '℄ = indies

118 fw = Firework (t)

119

120 tl .append (fw)

121

122 return Workflow2 (tl , name = ' exat tasks for new points ')

123

124

125 def initialisationStrategy (self):

126 return loadType (self ,

127 ' initialisationStrategy ',

128 InitialisationStrategy)

129

130

131 def parameterFittingStrategy (self):

132 return loadType (self ,

133 ' parameterFittingStrategy ',

134 ParameterFittingStrategy)

135

136

137 def outOfBoundsStrategy (self):

138 return loadType (self ,

139 ' outOfBoundsStrategy ',

140 OutOfBoundsStrategy)

141

142

143 def updateFitDataFromFwSpe (self , fw_spe):

144 for k in self . inputs : # Load the fitting data

145 if fw_spe [k ℄[0℄ .__lass__ == list :

146 self . fitData [k℄ .extend (fw_spe [k ℄[0℄)

147 else :

148 self . fitData [k℄ .extend (fw_spe [k ℄)

149

150 for k in self . outputs :

151 if fw_spe [k ℄[0℄ .__lass__ == list :

152 self . fitData [k℄ .extend (fw_spe [k ℄[0℄)

153 else :

154 self . fitData [k℄ .extend (fw_spe [k ℄)

7

155

156 firstSet = six .next (six .itervalues (self . fitData)) # Get first set

157 self . nSamples = len (firstSet)

158

159

160 def updateMinMax (self):

161 if not self . nSamples :

162 for v in self . inputs .values ():

163 v. min = 9 e99

164 v. max = -9 e99

165

166 for v in self . outputs .values ():

167 v. min = 9 e99

168 v. max = -9 e99

169

170 for k , v in self . inputs .iteritems ():

171 v. min = min (self . fitData [k ℄)

172 v. max = max (self . fitData [k ℄)

173

174 for k , v in self . outputs .iteritems ():

175 v. min = min (self . fitData [k ℄)

176 v. max = max (self . fitData [k ℄)

177

178

179 def error (self , Model , ** kwargs):

180 idxGenerator = kwargs .pop (' idxGenerator ', xrange (self . nSamples))

181

182 in_i = list ()

183 i = [0℄ * (1 + self .inputs_max_argPos ())

184

185 output = self . fitData [six .next (six .iterkeys (self . outputs))℄

186

187 for j in idxGenerator :

188 for k , v in self . inputs .iteritems ():

189 i[v. argPos ℄ = self . fitData [k ℄[j℄ # Load inputs

190

191 out = Model . all (in_i , i) # Call the surrogate model

192

193 yield out [0℄ - output [j℄

194

195

196 def extendedRange (self , outsidePoint , expansion_fator =1.2):

197

198 sampleRange = {}

199

200 for k , v in self . inputs .iteritems ():

201 sampleRange [k℄ = {}

202 outsideValue = outsidePoint [k℄

203

204 # If the value outside point is outside the range , set the

205 # '' loaldit '' max to the outside point value

206

207 if outsideValue > v['max '℄:

208 sampleRange [k ℄[' min '℄ = v[' max '℄

209 sampleRange [k ℄[' max '℄ = min (

210 outsideValue * expansion_fator ,

211 self . surrogateFuntion . inputs [k ℄. max

212)

213

214 elif outsideValue < v[' min '℄:

215 sampleRange [k ℄[' min '℄ = max (

216 outsideValue / expansion_fator ,

217 self . surrogateFuntion . inputs [k ℄. min

218)

219 sampleRange [k ℄[' max '℄ = v[' min '℄

8

220

221 else :

222 sampleRange [k ℄[' min '℄ = v[' min '℄

223 sampleRange [k ℄[' max '℄ = v[' max '℄

224

225 return sampleRange

Listing 5: The ode blok shows the implementation of the bakward mapping surrogate model

in the MoDeNa framework. The lass is made up of a total of nine methods: __init__ (line

11), exatTasks (line 98), initiationStrategy (line 125), parameterFittingStrategy (line

131), outOfBoundsStrategy (line 137), updateFitDataFromFwSpe (line 143), updateMinMax

(line 160), error (line 179) and extendedRange (line 196). The bakward mapping model

onnets the database, MoDeNa framework and Fireworks by providing strategies to the Fireworks,

saving and retrieving data from the database and alling the low-level C-funtion implemented in

the surrogate funtion.

Not even the Bakward Mapping Model represents �the bottom of the barrel� of the MoDeNa frame-

work, there is yet another layer of abstration indiated by the inheritane of Surrogate Model in line

1. Instead of explaining the details of the ode blok the next setion will visualise how and when the

di�erent methods are alled during di�erent stages of the bakward mapping proedures.

2.3 Bakward Mapping Work�ow

The model-based design of experiments (MBDoD) work�ow, outlined in Figure 1, is entral to the

bakward mapping strategies of the MoDeNa framework. Imagine that a simulation of a Bakward

Design Space

Design of

Experiments

Run Complex

Simulations

Get Sampled Data

Model Fitting

Error

Criteria

satisfied?

Surrogate

Model

Yes

No

Figure 1: Illustration of model-based design of experiments omputational work�ow.

Mapping Sript Task akin to the example in Listing 3, whih uses a bakward mapping surrogate

9

./figures/example_flowsheet.eps

model similar to that of Listings 1. Firstly, aording to line 16 in Listing 4, the Bakward Mapping

Sript Task is started. However, if a surrogate model has not yet been instantiated the simulation

fail immediately, throwing error ode 201 in the proess. The error ode is passed to the return ode

handler in the Bakward Mapping Task in Listing 2, where the boolean hek in line 7 is triggered.

This will ause the framework to instantiate all neessary models, loading the initialistation

strategy using the method in line 125. The initialisation in Listing 1 spei�es whih points the

initialisation should be performed in, shown as blak points in Figure 2. The initialisation strategy

alls the exatTasks in line 98 of the Bakward Mapping Model (Listing 4), whih reates a work�ow

whih performs all the exat simulations and saves the data, thus turning the points blue. After the

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc
bc

Figure 2: The �gure illustrates the initialisation of a surrogate model by �lling the design spae of the

model with points that should be explored further. The framework simulates the points and performs

parameter �tting of the surrogate funtion using a subset of the simulations. The rest of the points

are used in order to validate the surrogate model.

exat simulations have been performed, the surrogate funtion is �tted to the input-output data. The

user-spei�ed parameter �tting strategy from Listing 4 is loaded using the method in line 131 from

Listing 4, and the nonlinear regression results in a set of parameters that is veri�ed against a subset

of the simulated points that where not used in the �tting proedure.

The validation proedure uses the error method in line 179 in Listing 5 in order to evaluate the

error between the surrogate funtion and the exat simulation. In the ase where all the points are

aepted (green) the model is ready to be used. However, if a point is rejeted it is neessary to

perform additional simulations. This situation is illustrated in Figure 3, whih shows that when the

parameters are rejeted, the framework adds more points to the design spae, keeping the points that

have already been simulated, and performs the exat simulation only for the new points. This proedure

will be repeated, adding points, �tting the surrogate funtion and performing validation until the error

riterion is satis�ed. The simulation in the Bakward Mapping Sript Task will automatially start

and the MoDeNa framework an now evaluate the surrogate funtion inside domain, this is illustrated

using by the brown trajetory in Figure 4. When the surrogate model reahes the boundary of the

validated design spae the simulation will terminate, throwing error 200, whih triggers any surrogate

model that is �out of bounds� to expand the domain by loading the out of bounds strategy using

the method from Listing 5 in line 137.

The framework an for instane expand the domain by 20%, and try to �t the surrogate funtion by

adding simulations to a new domain and �t the surrogate funtion globally over both the old and new

domains as illustrated in �gure 5. When the surrogate model has been validated the simulation is

automatially re-started, and the proess ontinues to the simulation is omplete. The introdution

10

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc

bc bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc

bc
bc

Figure 3: The �gure illustrates how a subset of the simulated points is used for the validation of

the surrogate model, note that the subset that is used for the validation is not used for �tting the

parameters of the surrogate funtion. The input-output of the surrogate funtion and the simulation

is ompared and heked against an error riterion, eah point is either rejeted or validated. In the

ase that any of the points are rejeted, the framework will employ a strategy for improving the error

of the surrogate model, adding new points to the domain in an attempt that inreasing the resolution

will generate a better �t for the parameters of the surrogate funtion.

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc bc

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

Figure 4: The �gure illustrates that only a subset of the simulated points, not used for the parameter

�tting of the surrogate funtion, is used for validation. When the surrogate model has been validated

for a domain it an be evaluated, in this example allong a trajetory, untill it reahes the bounds of

the domain.

of strategies into the MoDeNa framework is a result of ooperation between the ontributors in work

pakage 4 and 5. Even though it is a more abstrat implementation than a standalone bakward

mapping module it has ultimately lead to a muh more �exible implementation that an easily be

modi�ed and extended depending on the needs of the user. Moreover, it has intertwined MoDeNa,

MongoDB and Fireworks into a more omplete modelling tool whih an be said to �speak the language

of multi-sale modelling�.

3 Strategies

A strategy in the MoDeNa framework is a way of introduing event handling into the simulation.

Instead of having one entralised event-handler, every surrogate model is allowed to in�uene the

11

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc bc
bc

bc

bc bc
bc

bc

bc

bc bc

bc

bc

bc

bc
bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc bc

Figure 5: The �gure illustrates the proess of a simulation, where the surrogate funtion has been used

along the trajetory, has been stopped, and the domain for the surrogate model is expanded to the

dotted lines. New points are added to the domain and exat simulations are performed at every point

before the surrogate funtion is �tted and validation globally aross the entire domain. Afterwards,

the simulation is re-started, and the proess ontinues until the simulation is omplete.

omputational work�ow aording to their needs; thus the event handling is impliitly handled by

Fireworks, whih happily exeutes the omputational work�ows as they are introdued.

From a framework perspetive a strategy represents a exhangeable blok of ode. The bakward

mapping model in Listings 1 ould for instane hange the initialisation strategy in line 6 with a di�erent

one, e.g. �Initial Data� whih initialises a model given the input-output data without exeuting the

exat task. Moreover, the strategy for the parameter �tting, whih is where the bakward mapping is

performed, an also be hanged.

All-in-all the introdution of strategies has allowed the framework to beome more modularised than

with an external bakward mapping module, espeially sine new strategies for design of experiments

and parameter �tting an easily be formulated as neessary beause the framework uses the R-statistial

language.

3.1 Fundamental Framework Implementation

The framework-level implementation of strategies is divided into two-piees, e.g. for initialisation:

Initialisation Strategy in Listing 6, i.e. the base-lass for the di�erent initialisation methods, and

Initialisation in Listing 7 whih reates a FireTask for the initialisation strategy.

The Initialisation Strategy in Listing 6 is intended to serve as a base-lass for spei� initialisation

strategies, i.e. it should be inherited by other lasses. This an be seen in the method new Points in

line 8, whih must be overwritten by the hild-lass as shown in the example implementation in Listing

8. However, the main funtionality of the Initialisation Strategy is provided by the workflow

method in line 12, whih generates a work�ow for the initialisation that an be exeuted by Fireworks.

Note that the link between the Initialisation Strategy and the Initialisation FireTask is that

the purpose of the latter is to all the workflow method of the �rst. This happens due to the run_task

on line 13 in Listing 7, whih is automatially exeuted by Fireworks.

1 lass InitialisationStrategy (defaultdit , FWSerializable):

2

3 def __init__ (self , * args , ** kwargs):

4 dit .__init__ (self , * args , ** kwargs)

5

12

6

7 �ab . abstratmethod

8 def newPoints (self):

9 raise NotImplementedError ('' newPoints not implemented ! '')

10

11

12 def workflow (self , model):

13 p = self . newPoints ()

14 if len (p):

15 wf = model .exatTask s(p)

16 wf .add AfterAll (model . parameterFittingStrategy (). workflow (model))

17 return wf

18 else :

19 return Workflow2 ([℄)

20

21

22 �serialize_fw

23 �reursive_serialize

24 def to_dit (self):

25 return dit (self)

26

27

28 �lassmethod

29 �reursive_deserialize

30 def from_dit (ls , m_dit):

31 return ls (m_dit)

32

33

34 def __repr__ (self):

35 return ' <{} >:{} '. format (self . fw_name , dit (self))

Listing 6: The ode blok shows the generi base-lass (mother-lass) for the di�erent initialisation

strategies in the MoDeNa framework. The reason why it should be onsidered a base-lass is that

it will not work stand-alone. Instead the lass must be inherited by a hild-lass, whih should

overwrite the newPoints method in Line 8; thus, the di�erene between the di�erent initialisation

strategies is largely their implementation of newPoints. The purpose of the lass is to return the

neessary workflow in order to initialise a surrogate model, this is done when the workflow in line

12 is alled. The approah of using base-lasses that returns the neessary work�ow in order to

perform initialisation, parameter �tting et. is arried out for all the di�erent types of strategies

in the MoDeNa framework, whih makes it easy to implement new strategies. Generally, it is only

neessary to implement one method in order to reate a new strategy when the respetive base-lass

is inherited. The �magi� of integrating the strategy into the MoDeNa work�ow will thereby be

handled by the base lass.

The Initialisation FireTask in Listing 7 is ats as a bu�er between the Initialisation Strategy

and the Fireworks work�ow; thus allowing the work�ow to be modi�ed as neessary instead of always

exeuting the same proedure.

1 �expliit_serialize

2 lass Initialisation (FireTaskBase):

3

4 def __init__ (self , * args , ** kwargs):

5 FireTaskBase .__init__ (self , * args , ** kwargs)

6

7 if kwargs .has_key (' surrogateModel '):

8 if isinstane (kwargs [' surrogateModel '℄, modena . SurrogateModel):

9 self [' surrogateModelId '℄ = kwargs [' surrogateModel '℄[' _id '℄

10 del self [' surrogateModel '℄

11

12

13 def run_task (self , fw_spe):

14 print term . yan + '' Performing initialisation '' + term . normal

13

15

16 model = modena . SurrogateModel .load (self [' surrogateModelId '℄)

17

18 return FWAtion (

19 detours = model . initialisationStrategy (). workflow (model)

20)

Listing 7: The ode blok shows the implementation of the Initialisation FireTask, whose purpose

is to all the workwlowmethod of the initialisation strategy that belongs to the surrogate model;

thereby, the lass tells Fireworks to take a detour in order to exeute the work�ow that is neessary

in order to instantiate the model. The parameter �tting, out of bounds and improve error strategies

employs a similar implementation, albeit with subtile diferenes.

The parameter �tting, out of bounds and improve error strategies all follow a similar generi framework

implementation in that there is one FireTask similar to that of Listing 7, and a base-lass, suh as

the one in Lsiting 6, that is responsible for generating the work�ow for the strategy. The spei�

implementation of the strategies themselves are naturally very di�erent, but all inherit their respetive

base-lass as shown in line 2 in Listing 8.

3.2 Spei� Strategy Implementation Example

The initialisation strategy used in Listing 1 was alled Initial Points, the implementation of that

strategy is shown in Listing 8. Line 8 in Listing 6 implies that any new initialisation strategy is required

to implement the method new Points, whih is used by the method that generates the workflow for

the initialisation in line 12.

1 �expliit_serialize

2 lass InitialPoints (InitialisationStrategy):

3

4 def __init__ (self , * args , ** kwargs):

5 InitialisationStrategy .__init__ (self , * args , ** kwargs)

6

7 def newPoints (self):

8 return self [' initialPoints '℄

Listing 8: The ode blok shows the implementation of the initialisation strategy orresponding to

the user providing the framework with spei� input points, whih the framework then will perform

simulations before �tting the surrogate funtion to the input-output data.

The framework urrently have two generi initialisation strategies implemented in addition to Initial

Points: Initial Data, where the user provides both input and output, and Empty Initialisation

Strategy whih does nothing. The latter is primarily used for forward mapping models.

4 Bakward mapping in pratie

The two-tank example that was presented in deliverable 5.5 exempli�es how the bakward mapping is

automatially performed as a part of the work�ow. The example is designed to show the struture of

the framework using a simple model of air, whih is being disharged through a valve from one reservoir

to another. From a MoDeNa perspetive the �ow through the nozzle must be onsidered as a omplex

problem, suh as a 3D Computational FluidDynamis or a di�erent detailed model. Consequently, the

two reservoirs are marosopi models and the rate of disharge of �uid through the nozzle represents

a mirosopi model. It demonstrated bakward mapping beause the domain of the inputs where

14

assumed to be unknown a priori; therefore the simulation had to expand the design spae for the

"bakward mapping model" throughout the simulation,

The �nal result of the simulation was the plot in Figure 6, whih shows how the pressure of the

reservoirs varies with respet to time. From the omplete simulation results it is not possible to see

that the marosopi model used a surrogate model that was �tted and re-�tted. In order to show

Figure 6: Pressures in eah of the two reservoirs as a funtion of time.

that the parameters of the surrogate funtion where hanging dynamially throughout the simulation,

Figure 7 shows how the value of the parameters hange with respet to the iteration number. This is

helpful espeially in identifying parts of the design spae where the surrogate model provides a good

approximation.

Figure 7: Model parameters as funtion of the number of bakward mapping iterations.

15

./figures/pressureplot.eps
./figures/plotparams.eps

	Contents
	1 Introduction
	2 Backward Mapping Models in the MoDeNa Framework
	2.1 User-level Backward Mapping Model
	2.2 The Backward Mapping FireTask
	2.2.1 Framework-level backward mapping surrogate model definition

	2.3 Backward Mapping Workflow

	3 Strategies
	3.1 Fundamental Framework Implementation
	3.2 Specific Strategy Implementation Example

	4 Backward mapping in practice

