Delivery date:
31-08-2015

Authors:

Sigve Karolius

Abstract:

MoDeNa

Deliverable D4.3
Backward Mapping Tool

Principal investigators:

Sigve Karolius
Heinz A Preisig
Henrik Rusche
Domanik Christ
Hrvoje Jasak
Collaborators:

Cansu Birgen

Project coordinator:
Heinz A Preisig

heinz.preisig@chemeng.ntnu.no

MoDeNa implements the concept of surrogate models that represent
approximation of complex models. The surrogate model is fitted to
the behaviour of the complex models using standard techniques. Once
identified, the surrogate can be used to replace the complex model
with the objective to reduce the computational load. Fitting is done
on demand, i.e. the model requesting the surrogate is controlling
the domain in which the surrogate is fitted and th strategy on how
the domain is being extended and what error criterion is used. The
implementation works recursively over the scales.

i

© 2015
MoDeNa

iii

Contents

1 Introduction

2 Backward Mapping Models in the MoDeNa Framework
2.1 User-level Backward Mapping Model . . .
2.2 The Backward Mapping FireTask

2.2.1 Framework-level backward mapping surrogate model definition

2.3 Backward Mapping Workflow

3 Strategies

3.1 Fundamental Framework Implementation

3.2 Specific Strategy Implementation Example

4 Backward mapping in practice

v

© W o

11
12
14

14

1 Introduction

The term backward mapping refers to comparing the output from a surrogate model to that of the
corresponding exact model. However, in order to clarify the syntax of the computer code in the MoDeNa
framework, the code employs a terminology for the surrogate model that is somewhat different: From
a programming perspective the implementation of a surrogate model must include a callable function;
therefore, the framework distinguishes between the surrogate function, i.e. the callable function, and
the surrogate model.

The reason for the design choice was to facilitate the implementation of surrogate models with different
properties, e.g. backward mapping capabilities. Consequently, backward mapping is not a standalone
module in the MoDeNa framework, but rather implemented as a property of the surrogate model itself.
There are two kinds of surrogate models in the MoDeNa framework: backward mapping and forward
mapping models. Only the backward mapping model can compare the output from the surrogate
function to that of the exact model, thus validating the parameters of the surrogate function.

Since the backward mapping task itself is simply to compare the input-output from the surrogate
function to that of the exact simulation, i.e. after it the surrogate function parameters have been
fitted, the procedure itself is dependent on the design of experiments and parameter fitting. The
standalone features of the framework is therefore the design of experiments and parameter fitting
modules, which are independent from one another; therefore, in order to make the framework more
modular, the concept of strategies was introduced. This allows the user to choose the strategies for
design of experiments and parameter fitting. Moreover, the R statistical language is used as a backend
for statistical methods of design of experiments and nonlinear regression, thus making it quicker to
implement space filling designs, regression and statistical methods.

The report will explain how the backward mapping procedure is integrated into the MoDeNa frame-
work, and elaborate on the strategies that allow for the flexible instantiation. Further it describes the
integration of the computational recipes written in the R statistical language.

2 Backward Mapping Models in the MoDeNa Framework

From the users perspective the backward mapping capabilities of the MoDeNa framework are facilitated
by adding strategies specific to: initialisation, design of experiments, and parameter fitting as shown
in Listing 1. This design choice has been made primarily for two reasons:

e Easy to use and understand

e Quick implementation and integration of new modules

This section will introduce the big picture of the technical aspects behind the implementation of the
"Backward Mapping Model”, i.e. the backward mapping tool, in order to avoid getting caught up in
coding-specific details related to the implementation. The report will therefore specifically focus on
explaining how the MoDeNa framework implementation integrates into:

1. Fireworks

o FireTask
o Workflow

2. MongoDB

© 0N DU R W N -

T S e I =
SGUR W N RO ©® N0 AW N~ O

NN N

(=]

e Looking up surrogate models

e Updating the database

3. The low-level C-Framework

2.1 User-level Backward Mapping Model

The "backward mapping model” class in the MoDeNa framework is responsible for handling surrogate
models that require backward mapping. For the purpose of completeness, note that the framework
also defines a "forward mapping model”; which, as the name dictates, does not facilitate any backward
mapping capabilities.

The code block in Listing 1 shows an example of how the user will define a backward mapping model.
In addition to specify strategies for: initialisation, design of experiments and parameter fitting, the user
has to suply a name, surrogate function and exact task. The latter is the simulation whose input-output
data the surrogate models parameter will be fitted to.

m = BackwardMappingModel (
_id= ’flowRate’,
surrogateFunction= f,
exactTask= FlowRateExactSim() ,
substituteModels= [1],
initialisationStrategy= Strategy .InitialPoints (
initialPoints=
{
’p’: [0.01, 0.01, 0.01, 0.011,
’rho0”: [3.4, 3.5, 3.4, 3.5],
’p0’: [2.8eb, 3.2e5, 2.8eb, 3.2e5],
’p1iByp0O’: [0.03, 0.03, 0.04, 0.04]1,
)’
out0fBoundsStrategy= Strategy .ExtendSpaceStochasticSampling (
nNewPoints= 4
)’
parameterFittingStrategy= Strategy .NonLinFitWithErrorContol (
testDataPercentage= 0.2,
maxError= 0.05,
improveErrorStrategy= Strategy .StochasticSampling (
nNewPoints= 2
),
maxIterations= 5 # Currently not used

) 2

)

Listing 1: The code block shows an example of an instantiation of a backward mapping surrogate
"flowRate”. The surrogate model is instantiated using notation equivalent to a JSON document
where every key has an associated value. The model defines a “surrogate function” in line 3, whose
parameters will be fitted to the input-output data of the “exactTask” in line 4. The strategies in
lines: 6, 15, 18 and 21 are triggered by events during the simulation.

Note that from the user perspective, just by looking at the definition in Listing 1, it is not at all
obvious how the underlying framework works. From this section it should be noted that the behaviour
of the backward mapping model, i.e. the strategies for initialisation etc., is specified by the user using
strategies. Consequently, it can be concluded that there are ”slots” in the underlying framework, i.e.
"missing” blocks of code that are designed to be completed by the user, called strategies.

© 0 N D U A W W

e e e e e e e
N O © 00 N O Ot W N = O

BOW W W W W W oW W W W N NNNNNNN NN
O © 00 N OO s W N FEF O © N0 s W

2.2 The Backward Mapping FireTask

In order to perform the actual backward mapping, i.e. compare output from the surrogate function,
e.g. line 3 from Listing 1, to that of the exact model, such as the one defined in line 4, it is necessary
to start a FireTask that can override the main workflow of the simulation. The reason for this is that
if the backward mapping is being performed by a surrogate model it is because the parameters of the
model are no longer valid and are in the process of being updated. It is therefore logical that the
simulation using the surrogate model cannot continue.

The MoDeNa framework therefore introduces two classes: Backward Mapping Task and Backward
Mapping Script Task. The latter is the FireTask that Fireworks executes in order to handle the
overall simulation, and the first is a wrapper which analyses the output from the simulation when an
error occurs, and modifies the workflow accordingly.

The Backward Mapping Taskin Listing 2 only contains one method, handleReturnCode, which catches
the output from the main simulation and takes action accordingly. There are currently two ways the
main simulation can exit and be caught by the framework using error codes 201 and 200 for referring
to instantiation or a surrogate model being out of bounds in lines 7 and 23 respectively. Any other
error code will, according to line 40, terminate the the simulation with an error, finally the simulation
continues until it has succeeded in line 44.

class BackwardMappingTask:
def handleReturnCode (self, returnCode):

Analyse return code
print (’return codey=,%i’ % returnCode)

if returnCode == 201:
print term.cyan + ’’Performing Initialisation’’ + term.normal
model = modena.SurrogateModel .loadFromModule ()

Continue with exact tasks , parameter estimation,
and (finally) this
task in order to resume normal operation

print model.initialisationStrategy ()
wf = model.initialisationStrategy ().workflow (model)
wf .add AfterAll (

Workflow2 ([Firework (self)], name=’original task’)

)

return FWAction (detours=wf)

elif returnCode == 200:
print term.cyan + ’’Performing Design of Experiments’’ + term.normal
model = modena.SurrogateModel .loadFailing ()

Continue with exact tasks , parameter estimation,
and (finally) this
task in order to resume normal operation
wf = model.outOfBoundsStrategy ().workflow (
model ,
outsidePoint= model .outsidePoint
)
wf .add AfterAll (
Workflow2 ([Firework (self)], name=’original task’)

)

return FWAction (detours=wf)

elif returnCode > O:

41
42
43
44
45
46

w N

© 0N U AW N

e e e o e
W N O W N = O

print (’An,error occurred’)
sys.exit (returnCode)

else:
print (’Success -, Weare done)
return FWAction ()

Listing 2: The script contains the framework implementation of a backward mapping task which
keeps track of the error codes from the simulations in the framework.

The class BackwardMappingScriptTask in Listing 4 represents the main simulation that the user wants
to perform. From the user perspective the simulation is an executable file, e.g. line 2 in Listing 3, with
a function returning the appropriate error codes if one of the surrogate models that are used is out of
bounds.

m = BackwardMappingScriptTask (

script=’name0fExecutableFile’

)

Listing 3: The code block shows an example shows how the user would specify a script, which contains
calls to various surrogate models, which the framework should simulate.

The underlying Backward Mapping Script Task in the framework uses the script parameter in line
4, which is automatically executed by Fireworks due to the run_task method in line 6. The error
code from the simulation is passed to the handleReturnCode function when the simulation terminates;
which, is available because of the inheritance of the Backward Mapping Task class from line 2 in Listing
2.

Qexplicit_serialize
class BackwardMappingScriptTask (ScriptTask, BackwardMappingTask):

required_params = [’script’]

def run_task (self, fw_spec):
print (
term.yellow
+ ’’Performing backward mapping simulation (macroscopic code recipe)’’
+ term.normal

)

self [’defuse_bad_rc’] = True

Execute the macroscopic code by calling function in base class
ret = super (BackwardMappingScriptTask , self) .run_task (fw_spec)

return self.handleReturnCode (ret.stored_datal[’returncode’])

Listing 4: The code block shows the implementation of a backward mapping script task which
performs a simulation.

This section summarised how the framework base classes facilitate the backward mapping by allow-
ing the simulation, i.e. the Backward Mapping Script Task, to “fail” in order to perform design of
experiments and parameter fitting according to the Backward Mapping Script before re-starting the
simulation.

2.2.1 Framework-level backward mapping surrogate model definition

Section 2.2 explained how the framework facilitates the main simulation to be halted in order to perform
design of experiments and parameter fitting. Moreover, Listing 1 it was introduced how the concept of

4

© 00 N O U R W N -

NN NN N R R R e e e e e
AW N RO © 0N OO A W N~ O

strategies is used by the MoDeNa framework to allow the user to specify how the backward mapping
is performed without writing code, but simply by "filling in the blanks”.

However, the section did not explain how the Backward Mapping Model uses the strategies and how
the database is being kept up-to-date. The Backward Mapping Model class, shown in Listing 5, is
substantial, and this section will outline how the class is used in the framework. Even though the inner
workings of the code will not be explained in detail it will be emphasised which part of the code, i.e.
the methods of the class, is responsible for instantiation, parameter fitting etc.

There are a total of nine methods defined in the Backward Mapping Model:

__init__ (line 11): Instantiate a new surrogate model object, use a model from database if possible,
otherwise create a new model based on the input e.g. from Listing 1.

exactTasks (line 98): Build a workflow to excute an exactTask for each point.
initiationStrategy (line 125): Load the initialisation strategy

parameterFittingStrategy (line 131): Load the parameter fitting strategy
out0fBoundsStrategy (line 137): Load the out of bounds strategy
updateFitDataFromFwSpec (line 143): Update database with new parameters

updateMinMax (line 160): Update database with new surrogate model min/max boundaries
error (line 179): Calculate the error between the exact simulation and the surrogate function

extendedRange (line 196): Expand the domain of the surrogate model

The reader is left to consider the code for the Backward Mapping Model in Listing 5 without further
adue. However, instead of reading the code line-by-line locate the methods listed above above; more-
over, pay special attention to how the methods loading a particular strategy refers directly to the keys
that are used in the user-level example in Listing 1.

class BackwardMappingModel (SurrogateModel):

Database definition

inputs = MapField (EmbeddedDocumentField (MinMaxArgPosOpt))
outputs = MapField (EmbeddedDocumentField (MinMaxArgPosOpt))
fitData = MapField(ListField (FloatField(required=True)))
substituteModels = ListField (ReferenceField (SurrogateModel))
outsidePoint = EmbeddedDocumentField (EmbDoc)

meta = {’allow_inheritance’: True}

def __init__ (self, *args, *xkwargs):
SurrogateModel .__init__ (self, *args, **xkwargs)
if kwargs .has_key (’_cls?’):
DynamicDocument .__init__ (self, xargs, **kwargs)
el8a 8
if not kwargs .has_key (’_id’):
raise Exception (’Need,_id’)
if not kwargs .has_key (’surrogateFunction?’):
raise Exception (’Need surrogateFunction?’)
if not isinstance(kwargs[’surrogateFunction’], SurrogateFunction):
raise TypeError (’Need surrogateFunction?’)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

kwargs [’ inherited_inputs’] = 0

kwargs[’fitData’] = {}

kwargs [’ inputs’] = {}

for k, v in kwargs[’surrogateFunction’].inputs.iteritems ():
kwargs [’ inputs’][k] = v.to_mongo ()

kwargs [’outputs’] = {}

for k, v in kwargs[’surrogateFunction’].outputs .iteritems():
kwargs [’fitData’][k] = []
kwargs [’outputs] [k] = MinMaxArgPosOpt (**{})

subOutputs = {}
for m in kwargs[’substituteModels ’]:
if not isinstance(m, SurrogateModel):
raise TypeError (
’Elements yof ,substituteModels’
’mustbeyderivedyfrom ,SurrogateModel’
)
subOutputs .update (m. outputsToModels ())

nInp = len(kwargs[’inputs’])
replaced = {}
while True:
found = None
for o in subOutputs:
if o in kwargs[’inputs’]:
found = o
break

if found == None:
break

del kwargs[’inputs’][o]
for k, v in subOutputs[o].inputs.iteritems ():
if not k in kwargs[’inputs’]:
kwargs [’ inputs’][k] = { ’argPos’: nInp 1}

nInp += 1
nInputs = 0
for k, v in kwargs[’inputs’].iteritems ():
kwargs [’fitData’][k] = []

kwargs [’inputs ’][k] = MinMaxArgPosOpt (*xv)
checkAndConvertType (kwargs, ’exactTask’, FireTaskBase);

checkAndConvertType (
kwargs ,
’initialisationStrategy’,
InitialisationStrategy

) 8

checkAndConvertType (
kwargs ,
>out0fBoundsStrategy’,
Out0fBoundsStrategy

)

checkAndConvertType (
kwargs ,
’parameterFittingStrategy’,
ParameterFittingStrategy

)

DynamicDocument .__init__ (self, *args, **kwargs)

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132

134
135

137
138
139
140
141
142
143
144
145
146
147
148

=
'S
©o

-
o

-
ORI

-
w

-
ot ot ot ot ot
¥

=
S

def

def

def

def

def

indices = self.parselIndices ()
for k,v in indices .iteritems ():
kwargs [’surrogateFunction’]. indices [k] .get _index (v)

self .save ()

exactTasks (self, points):

indices = self.parselndices ()

De-serialise the exact task from dict

et

tl
e =

load_object (self .meth_exactTask)

(1

six .next (six.itervalues (points))

for i in xrange (len(e)):

p = {}
for k in points:
plk] = points[k][il]

for m in self.substituteModels:
p-update (m.callModel (p))

t = et

t[’point’] = p
t[’indices?’] = indices
fw = Firework (t)

tl.append (fw)

return Workflow2 (tl, name=’exact tasks, for_ new,points’)

initialisationStrategy (self):
return loadType (self,

’initialisationStrategy’,
InitialisationStrategy)

parameterFittingStrategy (self):
return loadType (self,

’parameterFittingStrategy’,
ParameterFittingStrategy)

out0DfBoundsStrategy (self):
return loadType (self ,

>out0fBoundsStrategy’,
Out0fBoundsStrategy)

updateFitDataFromFwSpec (self, fw_spec):
for k in self.inputs: # Load the fitting data

for

if fw_spec[k][0] .__class__ == list:

self . fitData [k] .extend (fw_spec [k][0])
else:

self . fitData [k] .extend (fw_spec [k])

k in self.outputs:
if fw_spec[k][0] .__class__ == list:

self . fitData [k] .extend (fw_spec [k][0])
else:

self . fitData [k] .extend (fw_spec [k])

-

IS

-
[=2]

-

-
SRS RS IS
o

-
©

-
[=2]
o

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

184
185

187
188

190
191
192
193
194
195
196
197

199
200
201

NN NN NN NN NN NN NN NN NN
[e e - =]
® N U A W N R O © e oA ® R

—
©o

def

def

def

firstSet = six.next(six.itervalues(self.fitData)) # Get first

self .nSamples = len(firstSet)

updateMinMax (self):
if not self.nSamples:
for v in self.inputs .values ():
v.min = 9e99
v.max = -9e99

for v in self.outputs.values ():
v.min = 9e99
v.max = -9e99

for k, v in self.inputs.iteritems():
v.min = min(self.fitDatalk])
v.max = max (self.fitDatalk])

for k, v in self.outputs.iteritems():

v.min = min(self.fitDatalk])
v.max = max (self.fitDatalk])

error (self , cModel, **kwargs):

idxGenerator = kwargs .pop(’idxGenerator’,

in_i = list ()

i = [0] * (1 + self.inputs_max_argPos ())

output = self.fitData[six.next(six.iterkeys (self

for j in idxGenerator:
for k, v in self.inputs.iteritems():

.outputs))]

i[v.argPos] = self.fitDatalk][j] # Load inputs
out = cModel.call(in_i, i) the surrogate
yield out[0] - output[j]
extendedRange (self, outsidePoint, expansion_factor=1.2):

sampleRange = {}

for k, v in self.inputs.iteritems():
sampleRange [k] = {}
outsideValue = outsidePoint [k]

If the value outside point is outside the range, set the
’’localdict’’ max to the outside point value

if outsideValue > v[’max’]:
sampleRange [k][’min’] = v[’max’]
sampleRange [k][’max’] = min(
outsideValue*expansion_factor ,

self . surrogateFunction. inputs [k].max

elif outsideValue < v[’min’]:
sampleRange [k][’min’] = max (
outsideValue/expansion_factor ,

self . surrogateFunction. inputs [k].min

)

sampleRange [k][’max’] = v[’min’]

set

xrange (self .nSamples))

model

220
221
222
223
224
225

elli=ley:
sampleRange [k] [’min]
sampleRange [k] [’max ’]

v[’min’]
v[’max’]

return sampleRange

Listing 5: The code block shows the implementation of the backward mapping surrogate model
in the MoDeNa framework. The class is made up of a total of nine methods: __init__ (line
11), exactTasks (line 98), initiationStrategy (line 125), parameterFittingStrategy (line
131), out0fBoundsStrategy (line 137), updateFitDataFromFwSpec (line 143), updateMinMax
(line 160), error (line 179) and extendedRange (line 196). The backward mapping model
connects the database, MoDeNa framework and Fireworks by providing strategies to the Fireworks,
saving and retrieving data from the database and calling the low-level C-function implemented in
the surrogate function.

Not even the Backward Mapping Model represents "the bottom of the barrel” of the MoDeNa frame-
work, there is yet another layer of abstraction indicated by the inheritance of Surrogate Model in line
1. Instead of explaining the details of the code block the next section will visualise how and when the
different methods are called during different stages of the backward mapping procedures.

2.3 Backward Mapping Workflow

The model-based design of experiments (MBDoD) workflow, outlined in Figure 1, is central to the
backward mapping strategies of the MoDeNa framework. Imagine that a simulation of a Backward

Design Space

|
Design of
Experiments
|
Run Complex
Simulations

|

Get Sampled Data

|

Model Fitting

Error
Criteria
satisfied?

Surrogate
Model

Figure 1: Illustration of model-based design of experiments computational workflow.

Mapping Script Task akin to the example in Listing 3, which uses a backward mapping surrogate

./figures/example_flowsheet.eps

model similar to that of Listings 1. Firstly, according to line 16 in Listing 4, the Backward Mapping
Script Task is started. However, if a surrogate model has not yet been instantiated the simulation
fail immediately, throwing error code 201 in the process. The error code is passed to the return code
handler in the Backward Mapping Task in Listing 2, where the boolean check in line 7 is triggered.

This will cause the framework to instantiate all necessary models, loading the initialistation
strategy using the method in line 125. The initialisation in Listing 1 specifies which points the
initialisation should be performed in, shown as black points in Figure 2. The initialisation strategy
calls the exactTasks in line 98 of the Backward Mapping Model (Listing 4), which creates a workflow
which performs all the exact simulations and saves the data, thus turning the points blue. After the

Figure 2: The figure illustrates the initialisation of a surrogate model by filling the design space of the
model with points that should be explored further. The framework simulates the points and performs
parameter fitting of the surrogate function using a subset of the simulations. The rest of the points
are used in order to validate the surrogate model.

exact simulations have been performed, the surrogate function is fitted to the input-output data. The
user-specified parameter fitting strategy from Listing 4 is loaded using the method in line 131 from
Listing 4, and the nonlinear regression results in a set of parameters that is verified against a subset
of the simulated points that where not used in the fitting procedure.

The validation procedure uses the error method in line 179 in Listing 5 in order to evaluate the
error between the surrogate function and the exact simulation. In the case where all the points are
accepted (green) the model is ready to be used. However, if a point is rejected it is necessary to
perform additional simulations. This situation is illustrated in Figure 3, which shows that when the
parameters are rejected, the framework adds more points to the design space, keeping the points that
have already been simulated, and performs the exact simulation only for the new points. This procedure
will be repeated, adding points, fitting the surrogate function and performing validation until the error
criterion is satisfied. The simulation in the Backward Mapping Script Task will automatically start
and the MoDeNa framework can now evaluate the surrogate function inside domain, this is illustrated
using by the brown trajectory in Figure 4. When the surrogate model reaches the boundary of the
validated design space the simulation will terminate, throwing error 200, which triggers any surrogate
model that is "out of bounds” to expand the domain by loading the out of bounds strategy using
the method from Listing 5 in line 137.

The framework can for instance expand the domain by 20%, and try to fit the surrogate function by
adding simulations to a new domain and fit the surrogate function globally over both the old and new
domains as illustrated in figure 5. When the surrogate model has been validated the simulation is
automatically re-started, and the process continues to the simulation is complete. The introduction

10

Figure 3: The figure illustrates how a subset of the simulated points is used for the validation of
the surrogate model, note that the subset that is used for the validation is not used for fitting the
parameters of the surrogate function. The input-output of the surrogate function and the simulation
is compared and checked against an error criterion, each point is either rejected or validated. In the
case that any of the points are rejected, the framework will employ a strategy for improving the error
of the surrogate model, adding new points to the domain in an attempt that increasing the resolution
will generate a better fit for the parameters of the surrogate function.

Figure 4: The figure illustrates that only a subset of the simulated points, not used for the parameter
fitting of the surrogate function, is used for validation. When the surrogate model has been validated
for a domain it can be evaluated, in this example allong a trajectory, untill it reaches the bounds of
the domain.

of strategies into the MoDeNa framework is a result of cooperation between the contributors in work
package 4 and 5. Even though it is a more abstract implementation than a standalone backward
mapping module it has ultimately lead to a much more flexible implementation that can easily be
modified and extended depending on the needs of the user. Moreover, it has intertwined MoDeNa,
MongoDB and Fireworks into a more complete modelling tool which can be said to "speak the language
of multi-scale modelling”.

3 Strategies

A strategy in the MoDeNa framework is a way of introducing event handling into the simulation.
Instead of having one centralised event-handler, every surrogate model is allowed to influence the

11

G W N

o ®
%o

Figure 5: The figure illustrates the process of a simulation, where the surrogate function has been used

along the trajectory, has been stopped, and the domain for the surrogate model is expanded to the
dotted lines. New points are added to the domain and exact simulations are performed at every point
before the surrogate function is fitted and validation globally across the entire domain. Afterwards,
the simulation is re-started, and the process continues until the simulation is complete.

computational workflow according to their needs; thus the event handling is implicitly handled by
Fireworks, which happily executes the computational workflows as they are introduced.

From a framework perspective a strategy represents a exchangeable block of code. The backward
mapping model in Listings 1 could for instance change the initialisation strategy in line 6 with a different
one, e.g. “Initial Data” which initialises a model given the input-output data without executing the
exact task. Moreover, the strategy for the parameter fitting, which is where the backward mapping is
performed, can also be changed.

All-in-all the introduction of strategies has allowed the framework to become more modularised than
with an external backward mapping module, especially since new strategies for design of experiments
and parameter fitting can easily be formulated as necessary because the framework uses the R-statistical
language.

3.1 Fundamental Framework Implementation

The framework-level implementation of strategies is divided into two-pieces, e.g. for initialisation:
Initialisation Strategy in Listing 6, i.e. the base-class for the different initialisation methods, and
Initialisation in Listing 7 which creates a FireTask for the initialisation strategy.

The Initialisation Strategy in Listing 6 is intended to serve as a base-class for specific initialisation
strategies, i.e. it should be inherited by other classes. This can be seen in the method new Points in
line 8, which must be overwritten by the child-class as shown in the example implementation in Listing
8. However, the main functionality of the Initialisation Strategy is provided by the workflow
method in line 12, which generates a workflow for the initialisation that can be executed by Fireworks.
Note that the link between the Initialisation Strategy and the Initialisation FireTask is that
the purpose of the latter is to call the workflow method of the first. This happens due to the run_task
on line 13 in Listing 7, which is automatically executed by Fireworks.

class InitialisationStrategy (defaultdict, FWSerializable):

dict.__init__ (self, #*args, **xkwargs)

def init__ (self, *args, *x*kwargs):

12

@abc .abstractmethod
def newPoints (self):
raise NotImplementedError (’’newPoints not implemented!’’)

© 0 N D

e
= o

def workflow (self, model):

p = self .newPoints ()

if len(p):
wf = model .exactTasks(p)
wf .add AfterAll (model.parameterFittingStrategy ().workflow (model))
return wf

else:
return Workflow2 ([])

e e e e e e i
= O © 0 N O Us W N

@serialize_fw

@recursive_serialize

def to_dict (self):
return dict (self)

S 0 o s W N

Q@Qclassmethod

@recursive_deserialize

def from_dict (cls, m_dict):
return cls(m_dict)

WO N NN NN NN NN
o ©

w
—

32
33
34 def __repr__(self):

35 return ’<{}>:{}’.format (self.fw_name, dict (self))

Listing 6: The code block shows the generic base-class (mother-class) for the different initialisation
strategies in the MoDeNa framework. The reason why it should be considered a base-class is that
it will not work stand-alone. Instead the class must be inherited by a child-class, which should
overwrite the newPoints method in Line 8; thus, the difference between the different initialisation
strategies is largely their implementation of newPoints. The purpose of the class is to return the
necessary workflow in order to initialise a surrogate model, this is done when the workflow in line
12 is called. The approach of using base-classes that returns the necessary workflow in order to
perform initialisation, parameter fitting etc. is carried out for all the different types of strategies
in the MoDeNa framework, which makes it easy to implement new strategies. Generally, it is only
necessary to implement one method in order to create a new strategy when the respective base-class
is inherited. The “magic” of integrating the strategy into the MoDeNa workflow will thereby be
handled by the base class.

The Initialisation FireTask in Listing 7 is acts as a buffer between the Initialisation Strategy
and the Fireworks workflow; thus allowing the workflow to be modified as necessary instead of always
executing the same procedure.

1 Qexplicit_serialize

2 | class Initialisation(FireTaskBase):

3

4 def __init__ (self, *args, *xkwargs):

5 FireTaskBase.__init__ (self, xargs, **kwargs)

6

7 if kwargs .has_key (’surrogateModel’):

8 if isinstance(kwargs[’surrogateModel’], modena.SurrogateModel):
9 self [’surrogateModelId’] = kwargs[’surrogateModel’][’_id’]
10 del self[’surrogateModel’]

11

12

13 def run_task (self, fw_spec):

14 print term.cyan + ’’Performing initialisation’’ + term.normal

13

16
17
18
19
20

0 N O U W N

model=modena. SurrogateModel .load (self [’surrogateModelId’])

return FWAction (
detours=model.initialisationStrategy ().workflow (model)

)

Listing 7: The code block shows the implementation of the Initialisation FireTask, whose purpose
is to call the workwlow method of the initialisation strategy that belongs to the surrogate model;
thereby, the class tells Fireworks to take a detour in order to execute the workflow that is necessary
in order to instantiate the model. The parameter fitting, out of bounds and improve error strategies
employs a similar implementation, albeit with subtile diferences.

The parameter fitting, out of bounds and improve error strategies all follow a similar generic framework
implementation in that there is one FireTask similar to that of Listing 7, and a base-class, such as
the one in Lsiting 6, that is responsible for generating the workflow for the strategy. The specific
implementation of the strategies themselves are naturally very different, but all inherit their respective
base-class as shown in line 2 in Listing 8.

3.2 Specific Strategy Implementation Example

The initialisation strategy used in Listing 1 was called Initial Points, the implementation of that
strategy is shown in Listing 8. Line 8 in Listing 6 implies that any new initialisation strategy is required
to implement the method new Points, which is used by the method that generates the workflow for
the initialisation in line 12.

Qexplicit_serialize
class InitialPoints(InitialisationStrategy):

def __init__ (self, *args, **xkwargs):
InitialisationStrategy .__init__ (self, *args, **kwargs)

def newPoints (self):
return self[’initialPoints’]

Listing 8: The code block shows the implementation of the initialisation strategy corresponding to
the user providing the framework with specific input points, which the framework then will perform
simulations before fitting the surrogate function to the input-output data.

The framework currently have two generic initialisation strategies implemented in addition to Initial
Points: Initial Data, where the user provides both input and output, and Empty Initialisation
Strategy which does nothing. The latter is primarily used for forward mapping models.

4 Backward mapping in practice

The two-tank example that was presented in deliverable 5.5 exemplifies how the backward mapping is
automatically performed as a part of the workflow. The example is designed to show the structure of
the framework using a simple model of air, which is being discharged through a valve from one reservoir
to another. From a MoDeNa perspective the flow through the nozzle must be considered as a complex
problem, such as a 3D Computational FluidDynamics or a different detailed model. Consequently, the
two reservoirs are macroscopic models and the rate of discharge of fluid through the nozzle represents
a microscopic model. It demonstrated backward mapping because the domain of the inputs where

14

assumed to be unknown a priori; therefore the simulation had to expand the design space for the
"backward mapping model" throughout the simulation,

The final result of the simulation was the plot in Figure 6, which shows how the pressure of the
reservoirs varies with respect to time. From the complete simulation results it is not possible to see
that the macroscopic model used a surrogate model that was fitted and re-fitted. In order to show

300000

— po
— p1

250000 -

200000 -

150000 -

Pressure

100000 -

50000

0 1 2 3 4 5 6
Time

Figure 6: Pressures in each of the two reservoirs as a function of time.

that the parameters of the surrogate function where changing dynamically throughout the simulation,
Figure 7 shows how the value of the parameters change with respect to the iteration number. This is
helpful especially in identifying parts of the design space where the surrogate model provides a good
approximation.

1.30 T T T T T 0.440

10.435
1.29 -

40.430

I
N
=)

10.425

10.420

Parameter 1
=
N
~
Parameter 2

10.415

I
N
)

410.410

1.25-
-0.405

. . . L n 0.400
20 40 60 80 100 120
Iternation Number

1.24
[}

Figure 7: Model parameters as function of the number of backward mapping iterations.

15

./figures/pressureplot.eps
./figures/plotparams.eps

	Contents
	1 Introduction
	2 Backward Mapping Models in the MoDeNa Framework
	2.1 User-level Backward Mapping Model
	2.2 The Backward Mapping FireTask
	2.2.1 Framework-level backward mapping surrogate model definition

	2.3 Backward Mapping Workflow

	3 Strategies
	3.1 Fundamental Framework Implementation
	3.2 Specific Strategy Implementation Example

	4 Backward mapping in practice

