
Delivery date: July 2015 MODENA

Authors: Deliverable 1.3

Joachim Gross Thermodynamic models
US

E-mail: gross@itt.uni-stuttgart.de WP’s leader: UniTS

Jonas Mairhofer
US
E-mail: mairhofer@itt.uni-stuttgart.de

Principal investigators:
US: Joachim Gross, Jonas Mairhofer
UniTS: Sabrina Pricl, Erik Laurini

Project’s coordinator:
Heinz Preisig, NTNU (N)



Contents

1 Objectives of the deliverable 1

2 The PC-SAFT and GC-PC-SAFT equation of state 2
2.1 PC-SAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 GC-PC-SAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Homosegmented GC-PC-SAFT . . . . . . . . . . . . . . . . . . . 5
2.2.2 Heterosegmented GC-PC-SAFT . . . . . . . . . . . . . . . . . . . 5

2.3 Parameterization of PC-SAFT . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Parameterization using experimental data . . . . . . . . . . . . . 7
2.3.2 Parameterization using data from molecular simulations . . . . . 8

2.4 Parameterization of GC-PC-SAFT . . . . . . . . . . . . . . . . . . . . . 10

3 Density Functional Theory 10
3.1 DFT based on PC-SAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 DFT based on heterosegmented GC-PC-SAFT . . . . . . . . . . . . . . . 13

4 Surface Tension 15

5 Viscosities 20

6 Force field optimization 23

7 Summary and Outlook 25



1 Objectives of the deliverable

The objective of deliverable 1.3 is to report on the thermodynamic models and their
parameterization to calculate static properties, surface tensions and viscosities.

The report is organized as follows: the first section will introduce the equation of state
(EOS) which is used in the MoDeNa project and explain its parameterization. The sec-
ond section will cover the density functional theory (DFT) approach which is used to
calculate surface tensions. In the third and fourth section, the results of surface tensions
and viscosities are presented.

For both models (EOS and DFT) we present two approaches. Firstly, an approach on
the level of components where parameters are determined for every type of molecule and,
secondly, a group contribution (GC) approach where we assign parameters to each func-
tional group making up the molecules.

Both approaches have their advantages and disadvantages. Parameterization on the com-
ponent level usually leads to more accurate results. However, the parameterization has
to be redone for every new component that is present in the system under study. GC
methods on the other hand offer the flexibility that once the parameters of the functional
groups that make up the molecules in the system are available, on adding new compo-
nents of the same chemical family, i.e. consisting of the same functional groups, no new
parameterization is needed. This can prove to be advantageous for the MoDeNa project
as the components we are dealing with belong to a few chemical families (e.g. diols,
diisocyanates). Therefore, once the parameters of the main chemical groups (e.g. -CH2,
-OH, -NCO, etc.) are known, adding further components of these families to the system
does not require a new parameterization.
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2 The PC-SAFT and GC-PC-SAFT equation of state

In the following section, the basic equations of the thermodynamic model to calculate
static thermodynamic properties as well as viscosities, the PC-SAFT equation of state,
and its group contribution version, GC-PC-SAFT, are presented.

The parameters of PC-SAFT and GC-PC-SAFT are the segment diameter σ, the seg-
ment number m and the dispersive interaction energy ε. To include interactions due to
association two more parameters, the association energy and volume, εAB and κAB, re-
spectively, are needed. Furthermore, to account for polar interactions, the dipol moment
µ is used. For PC-SAFT, every component is characterized by a set of these parameters
while for GC-PC-SAFT, every chemical group is assigned its own set of parameters.

The equations of PC-SAFT and its extensions to associating and polar components are
taken from [1], [2] and [3]. Details on the GC-PC-SAFT EOS are taken from [4] and [5].

2.1 PC-SAFT

PC-SAFT is a molecular based EOS. Like all EOS from the SAFT (Statistical associating
fluid theory [6] [7] [8]) family, its basic idea is to split the Helmholtz energy A into different
contributions:

A

NkT
=

AIG

NkT
+
AHC

NkT
+
ADispersion

NkT
+
AAssociation

NkT
+
APolar

NkT
(1)

where the single contributions of the ideal gas AIG, volume exclusion and chain formation
AHC as well as dispersion, association and polar interactions, ADispersion, AAssociation and
APolar, respectively, are calculated as:

AIG

NkT
=
∑
i

xi(ln(ρi)− 1) (2)

with the mole fraction of component i xi and the component density ρi.

AHC

NkT
= m̄

AHS

NkT
+
∑
i

xi(1−mi)ln(gHSii ) (3)

where m̄ =
∑

i ximi and the contribution of volume exclusion is given by

AHS

NkT
=

1

ξ0

[
3ξ1ξ2

1− ξ3

+
ξ3

2

ξ3(1− ξ3)2
+

(
ξ3

2

ξ2
3

− ξ0

)
ln(1− ξ3)

]
(4)

with
ξn =

π

6
ρ
∑
i

ximid
n
i n ∈ (0, 1, 2, 3)
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the temperature dependent segment diameter

di(T ) = σi

[
1− 0.12exp

(
−3εi
kT

)]
and the radial distribution function of a hard sphere system

gHSij =
1

1− ξ3

+

(
didj
di + dj

)
3ξ2

2(1− ξ3)2
+

(
didj
di + dj

)2
ξ2

2

2(1− ξ3)3

The dispersive contribution in equation 1 is calculated by a second order perturbation
theory:

ADispersion

NkT
=

A1

NkT
+

A2

NkT
(5)

with the first and second order terms, A1 and A2, respectively:

A1

NkT
= −2πρI1(η, m̄)

∑
i

∑
j

xixjmimj

( εij
kT

)
σ3
ij (6)

A2

NkT
= −πρm̄

(
1 + ZHC + ρ

∂ZHC

∂ρ

)−1

I2(η, m̄)
∑
i

∑
j

xixjmimj

( εij
kT

)2

σ3
ij (7)

The terms appearing in equations 6 and 7 can be calculated as σij = 1
2

(σi + σj) and
εij =

√
εiεj(1− kij) with the binary interaction parameter kij as well as

(
1 + ZHC + ρ

∂ZHC

∂ρ

)
=

(
1 + m̄

8ξ3 − 2ξ2
3

(1− ξ3)4
+ (1− m̄)

20ξ3 − 27ξ2
3 + 12ξ3

3 − 2ξ4
3

[(1− ξ3)(2− ξ3)]2

)

I1(η, m̄) =
6∑
l=0

al(m̄)ηl

I2(η, m̄) =
6∑
l=0

bl(m̄)ηl

al(m̄) = a0l +
m̄− 1

m̄
a1l +

m̄− 1

m̄

m̄− 2

m̄
a2l

bl(m̄) = b0l +
m̄− 1

m̄
b1l +

m̄− 1

m̄

m̄− 2

m̄
b2l

with the packing fraction η = ξ3 and the PC-SAFT model constants a0l, a1l, a2l, b0l, b1l, b2l l =
(0, 1, 2, 3, 4, 5, 6) which can be found in [1].

The contribution to the Helmholtz energy due to association is given by

AAssociation

NkT
=
∑
i

xi
∑
Ai

(
lnXAi − XAi

2
+

1

2

)
(8)
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where XAi denotes the fraction of component i which is not bonded at its bonding site
XAi :

XAi =

1 + ρ
∑
i

xi
∑
Bj

XBj∆AiBj

−1

with

∆AiBj = gHSij κAiBjσ3
ij

[
exp

(
εAiBj

kT

)
− 1

]
The values of the association strength and volume of the mixture εAiBj and κAiBj , re-
spectively, can be calculated from the pure component parameters as follows

εAiBj =
1

2

(
εAiBi + εAjBj

)
κAiBj =

√
κAiBiκAjBj

(
2
√
σiiσjj

σii + σjj

)3

The dipole term is given by

APolar

NkT
=

ãdd2

1− ãdd3 /ã
dd
2

(9)

ãdd2 = −πρ
∑
i

∑
j

xixj
εi
kT

εj
kT

σ3
i σ

3
j

σ3
ij

µ∗2i µ
∗2
j J

dd
2

ãdd3 = −4π2

3
ρ2
∑
i

∑
j

∑
k

xixjxk
εi
kT

εj
kT

εk
kT

σ3
i σ

3
jσ

3
k

σijσikσjk
µ∗2i µ

∗2
j µ
∗2
k J

dd
3

Jdd2 =
4∑

n=0

(
an(mij) + bn(mij)

εij
kT

)
ηn

Jdd3 =
4∑

n=0

cn(mijk)η
n

µ∗2i =
µ2
i

miσ3
i εi

with mij = (mimj)
1/2 and mijk = (mimjmk)

1/3.

Once the Helmholtz energy A has been obtained by equation 1, other thermodynamic
properites can be calculated from derivatives of A, e.g. pressure p = −

(
∂A
∂V

)
T,N

and

chemical potentials µi =
(
∂A
∂Ni

)
T,V

.
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2.2 GC-PC-SAFT

2.2.1 Homosegmented GC-PC-SAFT

In the homosegmented GC-PC-SAFT approach, the pure component parameters are
obtained from the parameters of the single functional groups in the given component as:

mi =
∑
α

ni,αmi,α

miσ
3
i =

∑
α

ni,αmi,ασ
3
i,α

miεi =
∑
α

ni,αmi,αεi,α

µ2
i =

∑
α

ni,αµ
2
i,α

where α runs over the different types of functional groups in component i and ni,α indi-
cates how many times a given group is present in component i. Furthermore, mi,α, σi,α,
εi,α and µi,α are the group specific EOS parameters.
The values of the association strength and volume of component i, εAiBi and κAiBi, re-
spectively, are set to the values of the functional group that causes the association. Once
the pure component parameters have been calculated, the regular PC-SAFT equations
are used, see chapter .

2.2.2 Heterosegmented GC-PC-SAFT

In the heterosegmented GC-PC-SAFT approach, the equations for the different contri-
butions to the Helmholtz energy are no longer formulated on the component level but on
the level of the single functional groups in the component.

The contribution due to chain formation and volume exclusion now reads

AHC

NkT
= m̄

AHS

NkT
−
∑
i

xi(mi − 1)
∑
α

∑
β

Biαiβlng
HS
iαiβ(diαiβ) (10)

In equation 10, the first sum runs over all components in the system, while the second
and third sum run over all types of groups of every component i. The segment number
of component i mi is calculated from the segment numbers of the single groups as mi =∑

α ni,αmi,α and the average segment number of the mixture is obtained as m̄ =
∑

i ximi.
The contribution due to volume exclusion AHS can still be obtained from equation 4.
Furthermore, the temperature dependent segment diameter diαiβ and the segment level
radial distribution function gHSiαiβ(diαiβ) are

diα = σiα

(
1− 0.12exp

(
−3εiα
kT

))
5



and

gHSiαiβ(diαiβ) =
1

1− ξ3

+

(
diαdiβ
diα + diβ

)
3ξ2

(1− ξ3)2
+

(
diαdiβ
diα + diβ

)2
2ξ2

2

(1− ξ3)3

with

ξn =
π

6
ρ
∑
i

ximi

∑
α

ziαd
n
iα n = (0, 1, 2, 3)

zi,α = ni,α
mi,α

mi

The matrix Biαiβ stores information about the structure of the molecule by counting the
bonds between functional groups of type α and β in component i.
The first and second order terms of the dispersive contribution for the heterosegmented
GC-PC-SAFT EOS are

A1

NkT
= −2πρI1(m̄, η)

∑
i

∑
j

xixjmimj

∑
α

∑
β

ziαziβ

(εiαiβ
kT

)
σ3
iαiβ (11)

and

A2

NkT
= −πρm̄

(
1 + ZHC + ρ

∂ZHC

∂ρ

)−1

I2(m̄, η)
∑
i

∑
j

xixjmimj

∑
α

∑
β

ziαziβ

(εiαiβ
kT

)2

σ3
iαiβ

(12)
where the single terms appearing in equations 11 and 12 can be calculated as described
in chapter as well as εiαiβ =

√
εiαεiβ and σiαiβ = 0.5 (σiα + σiβ).

AAssociation

NkT
=
∑
i

xi
∑
α

niα
∑
Aiα

Niα

(
lnXAiα − 1−XAiα

2

)
(13)

XAiα =

(
1 + ρ

∑
j

xj
∑
β

niβ
∑
Bjβ

NjβX
Bjβ∆AiαBjβ

)−1

∆AiαBjβ = giαjβ(diαjβ)κAiαBjβσ3
iαjβ

(
exp

(
εAiαBjβ

kT

)
− 1

)
εAiαBjβ = 0.5

(
εAiαBiα + εAjβBjβ

)
κAiαBjβ =

√
κAiαBiακAjβBjβ

( √
σiαiασjβjβ

1/2
(
σiαiα+σjβjβ

))3

where the third sum in equation 13 runs over all association sites A on segments of type
α and Niα represents the number of association sites of a certain type.
Polar contributions can be calculated analogous to the homosegmented case, equation
9, using the same relation to obtain the pure component dipole moment from the group
values as for the homosegmented case, see section .
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2.3 Parameterization of PC-SAFT

2.3.1 Parameterization using experimental data

In cases where there is succifient experimental data available, the EOS parameters can
be obtained by a fitting procedure which usually takes the residuals of calculated and
experimental values of liquid densities and vapor pressures as objective function. The
following table shows the values of the PC-SAFT parameters obtained by fitting to ex-
perimentel data for components which are relevant to the MODENA project for example
as monomers and chain extenders of the PU polymer or as physical or chemical blowing
agents.

Component MW /g/mol m/MW ε/k /K σ/Å εAB/k/K κAB µ /Debye
1,2-Ethandiol 62.07 0.04209 310.114 3.154 2711.659 0.03 2.410
1,3-Propandiol 76.09 0.03321 247.561 3.424 3834.694 0.03 2.551
1,4-Butandiol 90.12 0.04598 199.009 3.085 4078.174 0.03 3.927
1,5-Pentandiol 104.15 0.04402 137.996 3.001 5630.302 0.03 2.371
1,6-Hexandiol 118.17 0.03406 248.156 3.485 3776.660 0.03 2.500
1,10-Decandiol 174.28 0.03994 256.764 3.369 32452.261 0.03 2.143

Tripropylene Glycol 192.25 0.01239 148.678 4.549 5597.844 0.03 0.41
Tetrahydrofuran 72.11 0.03433 274.134 3.512 - - 1.631

4,4’-MDI 250.26 0.03077 283.053 2.886 - - -
2,4-TDI 174.16 0.02667 297.632 3.523 - - 2.521

CO2 44.01 0.03438 163.333 3.187 - - 4.400
Pentane 72.15 0.03728 231.197 3.773 - - -

Cylopentane 70.13 0.03373 265.829 3.711 - - -

with molecular mass MW, segment number m, the energy of the dispersive interactions
ε, the segment diameter σ, the energy of associative interactions εAB, the association
volume κAB the dipole moment µ and Boltzmann’s constant k.
As a validation of the results obtained for those components where experimental data is
available, the following table shows the dimensionless average absolute deviation (AAD%)
of the calculated from the experimental results for values of liquid density and vapor pres-
sure. Both properties can be reproduced with only small deviations from the experimental
values.
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Component AAD% pvap AAD% ρliq

1,2-Ethandiol 1.80 0.28
1,3-Propandiol 3.63 0.78
1,4-Butandiol 3.21 0.41
1,5-Pentandiol 4.96 1.52
1,6-Hexandiol 4.29 0.15
1,10-Decandiol 0.70 0.19

Tripropylene Glycol 1.77 1.13
Tetrahydrofuran 0.50 0.27

4,4’-MDI 1.53 0.28
2,4-TDI 1.09 0.09

CO2 0.22 0.22
Pentane 0.23 0.31

Cylopentane 0.83 0.74

2.3.2 Parameterization using data from molecular simulations

For the polyurethane poylmers, experimental data which could be used to obtain the PC-
SAFT parameters is scarce. Therefore, a different approach is tried here and molecular
dynamics (MD) simultions are performed in order to generate results which in turn are
used to fit the EOS parameters against. Because pressure values fluctuate widely in these
simulations, besides values of liquid density the heat of evaporation is used instead of the
vapor pressure as the second property in the fitting routine.

In the following, we give a brief outline of the simulation set up. In order to obtain
the heat of evaporation, simulations of corresponding gas and liquid phases have to be
performed. The liquid phase simulations are carried out as MD simulations in the NpT-
ensemble, i.e. with a constant number of particles and fixed values of pressure and
temperature. The corresponding gas phase is simulated using stochastic dynamics (SD) in
the NVT-ensemble, i.e. with a constant number of particles and fixed values of volume and
temperature. In SD simulations the Langevin equations of motion instead of Newton’s
equations of motion are integrated to obtain the trajectories of the molecules. Langevin
equations of motion include an additional friction coefficient and a stochastic force. These
modifications speed up the gas phase simulations considerably because they instantly
account for processes which otherise would be apparent only on much longer time scales
due to the lack of interactions of the particles in the gas phase.
From these simulations, the heat of evaporation ∆lvh can be obtained as

∆lvh = hv − hl = uv − ul +RT − pvl (14)

with enthalpy h, potential energy of the system u, universal gas constant R, temperature
T, pressure p and specific volume v. The superscripts l and v denote properties of the
liquid and gas phase, respectively. In equation 14 we applied the ideal gas law to the gas
phase, i.e. pvv = RT .
All properties needed to calculate ∆lvh are obtained by averaging the values at certain
time steps over the complete simulation time. This procedure is carried out for different
temperatures to obtain enough data to fit the PC-SAFT parameters.
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As a general test of the applicability of this method, the EOS parameters of hexatriacon-
tane are calculated from results of liquid density and heat of evaporation of molecular
dynamic simulations with the GROMOS 54 A7 [9] [10] force field. With these parameters
we then calculate the solubility of methane in hexatriacontane with the PC-SAFT EOS
and compare the results to experimental values taken from [11].
As figure 1 shows, the simulation results are in good agreement with the experimental
values, especially at low pressures and higher temperatures.
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Figure 1: Experimental results [11] and results of PC-SAFT calculations for the solubility
of methane in hexatriacontane as a function of pressure at three different temperatures.
The EOS parameters of hexatriacontane are fit against values of liquid densities and heat
of evaporation obtained in molecular dynamic simulations.

Therefore, using data from molecular simulations can be seen as a valid alternative to
calculate the EOS parameters of components where experimental data is not available.
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2.4 Parameterization of GC-PC-SAFT

For GC-PC-SAFT, the EOS parameters have to be determined for every functional group.
For a wide range of groups this has been done in prior studies [5] and these values are ap-
plied unchanged where applicable. For the components relevant to the MoDeNa project,
the cyanate-group (-N=C=O) for the diisocyanates and the hydroxyl-group (-O-H) for
the diols are parameterized.

In order to obtain the parameters for the hydroxy-group, experimental data of a group
of diols consisting of 190 data points of liquid densities and vapor pressures for the com-
ponents 1-4-Butandiol, 1-5-Pentandiol, 1-6-Hexandiol, 1-7-Heptandiol, 1-8-Octandiol, 1-
9-Nonandiol, 1-10-Decandiol as well as Tripropylene glycol (TPG) are used. For the
cyanate-group, 129 experimental data points of 1-4-Diisocyanatobutane, 1-6-Diisocyanatohexane,
1-8-Diisocyanatooctane and 4-4’-MDI are used.

Group m ε/k /K σ/Å εAB/k/K κAB µ /Debye
-OH 0.07057 2055.03 5.757 4611.22 0.968E-03 -

-NCO 1.03960 374.68 3.851 - -

With these parameters, liquid densities and vapor pressures of the diols can be reproduced
with an avergae absolute deviation of AAD% pvapdiols = 16.35 and AAD% ρliqdiols = 4.73. For

the diisocyanates these figures are AAD% pvapdiiso = 41.61 and AAD% ρliqdiiso = 14.38.

3 Density Functional Theory

In the following sections we will present three different density functional theory (DFT)
approaches. Approach one and two are both compatible to PC-SAFT and differ only
in the way they treat dispersive contributions. Approach three is a group-contribution
method and it is compatible to heterosegment GC-PC-SAFT EOS.

The basic idea of DFT is that the equilibrium density profile in an inhomogeneous system
minimizes the grandcanonical potential Ω, i.e.(

δΩ

δρ(r)

)
ρ(r)=ρequilibrium(r)

= 0 (15)

with Ω = A[ρ(r)]−
∫ ∑

i ρi(r)µidr
The Helmholtz energy A, which is now a functional of the density profile, is again split
into separate contributions

A

kT
=
AIG

kT
+
AHS

kT
+
AChain

kT
+
ADispersion

kT
+
AAssociation

kT
+
APolar

kT
(16)
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3.1 DFT based on PC-SAFT

For the DFT based on PC-SAFT, the terms in equation 16 are presented in the following
section [12] [13].
The ideal gas contribution reads

AIG[ρ]

kT
=

∫
ρ(r) (ln(ρ(r)− 1) dr (17)

The hard sphere contribution is calculated using the weighted densities of the fundamental
measure theory [14] [15]

AHS[ρ]

kT
=

∫
Φ({nα})dr (18)

with the local hard sphere Hemlholtz energy density Φ

Φ(nα) = −n0ln(1− n3) +
n1n2 − ~n1~n2

1− n3

+ (n3
2 − 3n2~n2~n2)

n3 + (1− n3)2ln(1− n3)

36πn2
3(1− n3)2

which depends on the weighted densities nα

nα(r) =
∑
i=1

∫
ρi(r − r′)ωiα(r′)dr′

that can be calculated using the following weight functions

ωi3(r) = Θ(
σi
2
− r)

ωi2(r) = δ(
σi
2
− r)

ωi1(r) =
ω2
i (r)

2πσi

ωi0(r) =
ω2
i (r)

πσ2
i

~ωi2(r) =
r

r
δ(
σi
2
− r)

~ωi1(r) =
~ωi2(r)

2πσi

where r = |r|.
The contribution due to chain formation can be calculated as

AChain[ρ]

kT
=
∑
i

∫
(mi − 1) ρi(r)

(
ln

(
ρi(r)

ydd(ρ̄i(r))λi(r)

))
dr (19)
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with the cavity correlatoin function ydd

ydd(ρ̄i(r)) = ḡHSii (ρ̄i(r))

ḡHSij (ρ̄i(r)) =
1

1− ξ̄3(r)
+

(
didj
di + dj

)
3ξ̄2(r)

2(1− ξ̄3(r))2
+

(
didj
di + dj

)2
ξ̄2

2(r)

2(1− ξ̄3(r))3

and

λi(r) =
1

4πd2
i

∫
ρi(r)δ(di − |r − r′|)dr

ξ̄n(r) =
π

6

∑
i

ρ̄i(r)mid
n
i n ∈ (0, 1, 2, 3)

ρ̄i(r) =
3

4πd3
i

∫
ρi(r

′)Θ(di − |r − r′|)dr′

The first order term of the dispersive contribution is given by

A1PT [ρ]

kT
=

1

2
π
∑
i

∑
j

mimj

∫ ∫
ρi(r)ρj(r

′)

(
uPT (r̂)

kT

)
gHC(r̂, ρ̂)dr′dr (20)

whith r̂ = |r−r′| and ρ̂ = 1
2

∑
i (ρi(r) + ρi(r

′)). uPT denotes the Lennard-Jones potential
that is used to describe the disperive interations and gHC is the radial distribution function
of a hard chain fluid.
Equation 20 is not yet compatible to PC-SAFT. This can be achieved easily, however, by
a small local adjustment, see [12].
For approach one of the PC-SAFT based DFT, dispersive interactions are treated by
evaluating equation 20. The drawback of this method is the time consuming task of
carrying out the integration which requires the recalculation of gHC and uPT for many
values of r̂. Therefore, approach two treats the dispersive contribution in a weighted
density approximation which is defined as

ADispersion[ρ]

kT
=

∫
ρ̄∗(r)

ADispersion(ρ̄∗(r))

NkT
dr (21)

ρ̄∗(r) =
∑
i

3

4πσ3
Disp,i

∫
ρi(r

′)Θ(σDisp,i − |r − r′|)dr′

where ADispersion(ρ̄∗(r))
NkT

is obtained by evaluating the bulk EOS, equation 5, at the local
weighted density ρ̄∗(r).

Associative and polar interactions are treated in a local density approximation in both
approaches, i.e.

AAssociation[ρ]

kT
=

∫
ρ(r)

AAssociation(ρ(r))

NkT
dr (22)

and
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APolar[ρ]

kT
=

∫
ρ(r)

APolar(ρ(r))

NkT
dr (23)

where AAssociation(ρ(r))
NkT

and APolar(ρ(r))
NkT

are obtained by evaluating the bulk EOS, equations
8 and 9, at the local density ρ(r).

3.2 DFT based on heterosegmented GC-PC-SAFT

In this section, a DFT which is compatible to the heterosegment GC-PC-SAFT EOS is
presented. So far, contributions of volume exclusion, chain formation and dispersion are
implemented. Besides the dispersive contribution of heterosegment GC-PC-SAFT EOS
it uses the chain formation term of modified iSAFT [16].
The main equation to calculate the density profile of segment is in a system where no
external potential is present is [16]

ρsegis (r) = exp (βµM) exp (Dis(r)) I1,is(r)I2,is(r) (24)

with the bulk chemical potential of the chain molecule that segment is belongs to µM ,
β = 1

kT
and

I1,1(r) = 1

I1,js(r) =

∫
I1,js−1(r’)exp (Djs−1(r’)) ∆js−1,js(r’, r)dr’

I2,NSj(r) = 1

I2,js(r) =

∫
I2,js+1(r’)exp (Djs+1(r’)) ∆js,js+1(r’, r)dr’

where NSj is the number of functional groups on the chain molecule that group js belongs
to. Furthermore,

Dα(r) =
1

2

NS∑
γ

{γ′}∑
γ′

∫
ρsegγ (r1)

δlnyγγ
′

contact [{ρ̄segα (r1)}, (r, r1)]

δρsegα
dr1 −

δβAHS

δρsegα (r)
− δβADispersion

δρsegα (r)

(25)
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ρ̄segα (r) =
3

4πσ3
α

∫
ρsegα (r′)Θ(σα − |r − r′|)dr′

yγγ
′

contact [{ρ̄segα (r1)}, (r, r1)] =
(
yγγ

′

contact [{ρ̄segα (r)}] · yγγ
′

contact [{ρ̄segα (r1)}]
)0.5

yγγ
′

contact [{ρ̄segα (r)}] =
1

1− ξ̄3

+
σγσγ′

σγ + σγ′

ξ̄2

(1− ξ̄3)2
+ 2

(
σγσγ′

σγ + σγ′

)2
ξ̄2

2

(1− ξ̄3)3

ξ̄n =
π

6

NS∑
γ

mγ ρ̄
seg
γ (r)σnγ

∆γ,γ′(r’, r) =
δ
(
|r’− r| − σγγ′

)
4π (σγγ′)2 yγγ

′

contact(r, r’)

where NS in equation 25 is the total number of groups, i.e. NS =
∑

i NSi.

The hard sphere contribution AHS

kT
is calculated according to equation 18 with the small

modification, that the weighted densities are multiplied by the group segment number
mγ, i.e. nα(r) =

∑NS
γ mγ

∫
ρsegγ (r − r′)ωγα(r′)dr′.

ADispersion

kT
is calculated with a weighted density approximation according to

ADispersion[ρ]

kT
=

∫
ρ̄∗(r)

ADispersion,GC−PC−SAFT (ρ̄∗(r))

NkT
dr (26)

ρ̄∗(r) =
∑
i

ρ̄∗i (r)

ρ̄∗i (r) =
1

NSi

NSi∑
is

ρ̄∗is(r)

ρ̄∗is(r) =
3

4πσ3
Disp,is

∫
ρis(r

′)Θ(σDisp,is − |r − r′|)dr′

where ADispersion,GC−PC−SAFT (ρ̄∗(r))
NkT

is calculated as

ADispersion,GC−PC−SAFT (ρ̄∗(r))

NkT
=
ADisp1

NkT
+
ADisp2

NkT
(27)

with

ADisp1

NkT
= −2πρ̄∗I1(m̄, η̄)

∑
i

∑
j

xixj

NSi∑
is

NSj∑
js

mismjsωisωjs
εisjs
kT

σ3
isjs

ADisp2

NkT
= −πρ̄∗m̄I2(m̄, η̄)

(
1 + Zhc + ρ

∂Zhc

∂ρ

)−1∑
i

∑
j

xixj

NSi∑
is

NSj∑
js

mismjsωisωjs

(εisjs
kT

)2

σ3
isjs
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and η̄ = ξ̄3, m̄ =
∑

i xi
∑NS,i

is mis as well as ωis =
ρ̄∗is
ρ̄∗i

where ρ̄∗i is the weighted density of

the chain molecule that segment is belongs to.

4 Surface Tension

In the first part of this section, results obtained with the group contribution DFT are
compared to experimental values and results of the PC-SAFT based DFT approaches
in order to validate the group contribution DFT. In the second part, systems relevant
to the MoDeNa project are studied. So far, the group contribution DFT is not able to
treat ring molecules such as cyclopentane or 44-MDI. Therefore, it is not applied to the
systems studied in the second part of this section.

The advantage of the group contribution DFT approach is that is yields results on a more
detailed level. Figure 2 shows the density profiles obtained from a simulation of pentane.
While the PC-SAFT based DFT approaches can only claculate the total density of pen-
tane, the group contribution DFT also provides the density profiles of the five chemical
groups of pentane seperately. From figure 2 is is apparent that the profiles of the single
groups differ in the interface. The value of this additional information for a simple pentane
simulation is small, however, for more complex molecules with strong polar or associative
groups and surfactants, the knowledge of the group density profiles may prove important.

Figure 2: Segment densities and total density of pentane at T=233.15K calculated with
the group contribution DFT.

Figures 3, 4 and 5 compare the simulation results of the different DFT approaches to
experimental data. For pure components, figure 3, the PC-SAFT based approaches per-
form comparably well, while deviations to experimental data are a little larger for the
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group contribution DFT, especially for larger molecules.

Figure 3: Values of surface tension of alkanes and alkenes calculated with all three DFT
approaches (here g(r) ≡ approach 1, WDA ≡ approach 2 and GC-iSAFT ≡ approach 3 ).

However, for the binary mixtures shown in figure 4 the group contribution method per-
forms a little better than the other two methods. The situation for the three component
mixture in figure 5 is similar. Only the group contribution method and the weighted
density approach are capable of calculating results for ternary mixtures. While neither
method matches the experiments perfectly, the group contribution method is in better
agreement with the experiments over the complete calculated pressure range. Figure 5
(b) shows the density profiles of all three components obtained with these two DFT ap-
proaches. The profiles agree qualitatively, i.e. both methods predict an accumluation of
nitrogen and butane at the interface.
From these results it can be confirmed that the group contribution DFT gives reliable
results and, therefore, it will be further extended in order to treat additional classes of
substances such as ring molecules.

In the remaining part of this section, the PC-SAFT based DFT approaches are applied
to systems containing components which are present in the MoDeNa project. Figure 6
shows simulation and experimental results of cyclopentane and 44-MDI as a function of
temperature. Both DFT methods show a similar behaviour for both components. In
both cases, the results of approach one are in better agreement with the experiments.
Figure 7 shows results for the binary mixtures of CO2 with butandiol, THF and 44-MDI
as a function of temperature. For the mixtures containing butandiol and THF, both
DFT methods exhibit very similar results. The larger deviations for the mixture CO2

and 44-MDI can be attributed to poor convegence of approach one (denoted g(r)).
Similar convergence problems arise for approach one for the systems shown in figure 8.
The displayed results are obtained for a binary mixture consisting of a dimer of 44-MDI
and butandiol and pentane (a), cyclopentane (b) as well as CO2 (c).
The results of this section show that from the PC-SAFT based approaches, when con-
vergence can be achieved, approach one is more accurate than approach two. However,
approach one is limited to pure components and binary mixtures. Therefore, approach
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Figure 4: Surface tension of a hexane-octane mixture as a function of the molar fraction of
Hexane in the liquid phase (here g(r) ≡ approach 1, WDA ≡ approach 2 and GC-iSAFT
≡ approach 3 ).

Figure 5: Left: Values of surface tension of a nitrogen, butane, tetradecane mixture as a
function of pressure at T=373.15K. Right: density profiles calculated with approach two
(WDA) and three (GC-iSAFT ) at p=330bar and T=373.15K.
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Figure 6: Surface tension of Cyclopentane and 4-4’-MDI calculated with approach one
(g(r)) and two (WDA) as a function of temperature.

(a) Surface tension Butandiol and CO2. (b) Surface tension THF and CO2.

(c) Surface tension 44-MDI and CO2.

Figure 7: Surface tension of Butandiol (a), THF (b) and 44-MDI (c) in mixtures with
CO2 as functions of temperature with approach one (g(r)) and two (WDA).
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(a) Surface tension of dimer and Pentane. (b) Surface tension of dimer and Cyclopentane.

(c) Surface tension of dimer and CO2.

Figure 8: Surface tension of a 44-MDI-Butandiol-dimer and Pentane (a), Cyclopentane
(b) and CO2 (c) calculated with with approach one (g(r)) and two (WDA).
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2 seems advantageous for the MoDeNa project. The group contribution DFT showed
larger deviations from experiments than the PC-SAFT based DFT approaches for pure
components but better agreement for mixtures and, furthermore, since it is based on a
group contribution method, it is more flexible and therefore more suited for MoDeNa
than the PC-SAFT based DFT approaches.

5 Viscosities

Viscosities are calculated using an entropy-scaling approach by Rosenfeld [17] [18] and
its implementation with (GC)-PC-SAFT by Lötgering-Lin and Gross [19].
The basic idea of this approach is that the reduced viscosity η∗ is a monovariable function
of the residual entropy sres. Where the reduced viscosity is defined as

η∗ =
η

ηCE
(28)

where ηCE is the Chapman-Enskog viscosity defined as

ηCE =
5

16

√
MkT/(miNAπ)

σ2
i Ω

(2,2)∗

Here, Ω(2,2)∗ denotes the reduced collision integral. An empirical approximation is used
to calculate the value of Ω(2,2)∗ [20]. And furthermore, M denotes molar mass, k is the
Boltzmann constant, Avogradros number NA and the pure component parameters mi

and σi which for the implementation with GC-PC-SAFT are calculated from the group
parameters using the relations given in chapter .
The residual entropy is defined as the difference to the ideal gas entropy as sres(ρ, T ) =

s(ρ, T )−sIG(ρ, T ) and it is calculated with (GC)-PC-SAFT as sres(ρ, T ) = −
(
∂(Ares/N)

∂T

)
ρ
.

The empirical correlation to calculate pure component viscosities is

lnηi∗ = Ai +Biz + Ciz
2 +Diz

3 (29)

where z = sres
kmi

.
For the PC-SAFT version, the parameters Ai, Bi, Ci and Di are adjusted to experimental
viscosities of component i by a least-squares fit. For GC-PC-SAFT, the parameters are
first determined for the single groups and in a second step calculated for a pure component
i by the following relations:

Ai =
∑
α

ni,αmασ
3
αAα

Bi =
∑
α

ni,αmασ
3
α

V γ
tot,i

Bα

Ci =
∑
α

ni,αCα

Di = D
∑
α

ni,α
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where ni,α is defined as in chapter , Vtot,i =
∑

α ni,αmασ
3
α and the model constants γ = 0.45

and D = −0.01245.

For the PC-SAFT approach, the four model parameters are fitted to 9 data points for
Tripropylene glycol (TPG), 76 data points for 1-4-Butandiol (BD) and 6 data points for
4-4’-MDI.
For the GC-PC-SAFT version, the parameters for the functional groups -OH and -O- are
fitted to 242 data points of a group of diols consisting of 1-4-Butandiol, 1-5-Pentandiol,
1-6-Hexandiol, 1-7-Heptandiol, 1-8-Octandiol, 1-9-Nonandiol, 1-10-Decandiol and TPG.
Furthermore, the parameters for the functional group -NCO are fitted to 27 data points
of a group of diisocynates consisting of 1-4-Diisocyanatobutane, 1-6-Diisocyanatohexane,
1-8-Diisocyanatooctane and 4-4’-MDI.
The remaining functional groups such as −CH2,−CH3, etc. have been fitted in earlier
studies [19] to extensive experimental data and are applied unchanged to the diols and
diisocyanates of the MoDeNa project.
The following table shows the mean absolute relative deviations (MAD) between simula-
tion and experimental viscosity values for both approaches.

MAD % PC-SAFT MAD % GC-PC-SAFT
TPG 2.12 4.55
BD 3.66 12.19

MDI 1.13 5.50

Figures 9, 10 and 11 show the simulation as well as the experimental results. Since sres is
a calculated property that depends on the used EOS, values of sres differ for the PC-SAFT
and the GC-PC-SAFT approach for a given state point. Also, since the Chapman-Enskog
viscosity ηCE is calculated from the EOS parameters m and σ which have different values
for a given component in the PC-SAFT and the GC-PC-SAFT approach, the x and y
axes of plots of the same component are not identical.
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Figure 9: Calculated and experimental viscosities of 1-4-Butandiol. Left: Results of
PC-SAFT. Right: Results of GC-PC-SAFT.
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Figure 10: Calculated and experimental viscosities of TPG. Left: Results of PC-SAFT.
Right: Results of GC-PC-SAFT.
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Figure 11: Calculated and experimental viscosities of 4-4’-MDI. Left: Results of PC-
SAFT. Right: Results of GC-PC-SAFT.
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6 Force field optimization

US has conducted an optimization of the van der Waals parameters of the force field
selected by UNITS in task 1.2. The objective of the optimization is the accurate repre-
sentation of vapor-liquid equilibria, i.e. the densities of the coexisting liquid and vapor
phase as well as vapor pressures. The fundamentals of the optimization procedure are
presented in the work of Hemmen et al. [21].
Figure 12 and 13 show the improvement in the calculation of the phase envelope and
vapor pressure curve of methylisocyanate during the single steps of the optimization. In
these simulations, the van der Waals parameters of the atoms of the cyanate group are
adjusted to experimental data.
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Figure 12: Monte Carlo simulation results of vapor pressure for methylisocyanate for the
single optimization iterations of the adjustment of the van der Waals parameters of the
cyanate group atoms. The solid curve denotes PC-SAFT results with parameters which
were adjusted to the depicted experimental data and indicate the final trend of the Monte
Carlo results with optimized parameters.
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Figure 13: Monte Carlo simulation results of the densities for the corresponding vapor and
liquid phases in equilibrium of methylisocyanate for the single optimization iterations of
the adjustment of the van der Waals parameters of the cyanate group atoms. The solid
curve denotes PC-SAFT results with parameters which were adjusted to the depicted
experimental data and indicate the final trend of the Monte Carlo results with optimized
parameters.

However, as reported by UNITS in milestone 1.2, the original values of the force field
parameters resulted in very accurate results for structural properties. Since the calcula-
tion of these structural properties and not the determination of phase equilibria is the
main purpose of the atomistic simulations in the MoDeNa project, the original parameter
values will be used unchanged in subsequent molecular simulations.
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7 Summary and Outlook

The PC-SAFT EOS and its group contribution version GC-PC-SAFT as well as DFT
approaches based on PC-SAFT and also on GC-PC-SAFT are presented.
In general, the agreement between simulation and experimental results is better for PC-
SAFT based approaches. Exceptions include results of surface tension of binary and
ternary mixtures where results of the group contributino method are in better agreement
with experiments.
Viscosities are calculated by an entropy scaling approach with good agreement between
simulation and experimental results for most components. Surface tensions can be repro-
duced with acceptable deviations from experiments for most systems. However, in some
simulations convergence problems occur.

Next steps will include the integration of the viscosity model into the MoDeNa framework,
i.e. the identification of suitable surrogate models as well as extending the GC-PC-SAFT
based DFT approach to components with more complex interactions and ring molecules.
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